Skip to main content

Advertisement

Log in

Evaluation of biogas upgrading technologies and future perspectives: a review

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Biogas is acknowledged as one of the foremost bioenergy to address the current environmental and energy challenges being faced by the world. Commonly, biogas is used for applications like cooking, lighting, heat and power production. To widen the scope of biogas application, like transportation, natural gas grid injection and substrate for the production of chemicals and fuel cells, mainly CO2, H2S and other impurities need to be removed by various upgrading technologies. It is an important process to produce biomethane with above 90% methane. There are various physico-chemical (adsorption, absorption, cryogenic and membrane separations) and biological (in situ and ex situ) processes for biogas upgradation, and each process is site and case specific. The aim of the present paper is to thoroughly evaluate the existing and emerging biogas upgrading technologies. Analysis of each technology with respect to basis of operations, energy requirement, methane purity and recovery and cost economics has been carried out. A thorough analysis has been done on the major hurdles and the research gaps in this sector. For a wider and successful implementation of the biogas upgradation technology, the trends in research and development (R&D) such as development of efficient biogas upgrading technologies, adsorbents, reduction in cost and methane loss have been thoroughly evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abdeen FRH, Mel M, Jami MS, Ihsan SI, Ismail AF (2016) A review of chemical absorption of carbon dioxide for biogas upgrading. Chin J Chem Eng 24:693–702

    Article  CAS  Google Scholar 

  • Adewole JK, Ahmad AL, Ismail S, Leo CP (2013) Current challenges in membrane separation of CO2 from natural gas: a review. Int J Greenh Gas Con 17:46–65

    Article  CAS  Google Scholar 

  • Agneessens LM, Ottosen LDM, Voigt NV, Nielsen JL, de Jonge N, Fischer CH, Kofoed MVW (2017) In-situ biogas upgrading with pulse H2 additions: the relevance of methanogen adaption and inorganic carbon level. Bioresour Technol 233:256–263

    Article  CAS  Google Scholar 

  • Ajhar M, Travesset M, Yuce S, Melin T (2010) Siloxane removal from landfill and digester gas—a technology overview Bioresour Technol 101:2913–2923

  • Alfaro N, Fdz-Polanco M, Fdz-Polanco F, Díaz I (2018) Evaluation of process performance, energy consumption and microbiota characterization in a ceramic membrane bioreactor for ex-situ biomethanation of H2 and CO2. Bioresour Technol 258:142–150

    Article  CAS  Google Scholar 

  • Allegue LB, Hinge J (2012) Report: biogas and bio-syngas upgrading. Danish Technological Institute. https://www.teknologisk.dk/_/media/52679_Report-Biogasandsyngasupgrading.pdf

  • Andriani D, Wresta A, Atmaja TD, Saepudin A (2014) A review on optimization production and upgrading biogas through CO2 removal using various techniques. Appl Biochem Biotechnol 172:1909–1928

    Article  CAS  Google Scholar 

  • Angelidaki I, Treu L, Tsapekos P, Luo G, Campanaro S, Wenzel H, Kougias PG (2018) Biogas upgrading and utilization: current status and perspectives. Biotechnol Adv 2:452–466

    Article  CAS  Google Scholar 

  • Aryal N, Kvist T, Ammam F, Pant D, Ottosen LDM (2018) An overview of microbial biogas enrichment. Bioresour Technol 264:359–369

    Article  CAS  Google Scholar 

  • Augelletti R, Conti M, Annesini MC (2017) Pressure swing adsorption for biogas upgrading. A new process configuration for the separation of biomethane and carbon dioxide. J Clean Prod 140:1390–1398

    Article  CAS  Google Scholar 

  • Awe OW, Zhao Y, Nzihou A, Minh DP, Lyczko N (2017) A review of biogas utilisation, purification and upgrading technologies. Waste Biomass Valor 8:267–283

  • Bailera M, Lisbona P, Romeo LM, Espatolero S (2017) Power to gas projects review: lab, pilot and demo plants for storing renewable energy and CO2. Renew Sust Energ Rev 69:292–312

    Article  CAS  Google Scholar 

  • Bao Z, Alnemrat S, Yu L, Vasiliev I, Ren Q, Lu X, Deng S (2011a) Kinetic separation of carbon dioxide and methane on a copper metal-organic frame-work. J Colloid Interface Sci 357:504–509

    Article  CAS  Google Scholar 

  • Bao Z, Yu LA, Ren QL, Lu XY, Deng SG (2011b) Adsorption of CO2 and CH4 on a magnesium-based metal organic framework. J Colloid Interface Sci 353(2):549–556

    Article  CAS  Google Scholar 

  • Bassani I, Kougias PG, Angelidaki I (2016) In-situ biogas upgrading in thermophilic granular UASB reactor: key factors affecting the hydrogen mass transfer rate. Bioresour Technol 221:485–491

    Article  CAS  Google Scholar 

  • Bassani I, Kougias PG, Treu L, Porté H, Campanaro S, Angelidaki I (2017) Optimization of hydrogen dispersion in thermophilic up-flow reactors for ex situ biogas upgrading. Bioresour Technol 234:310–319

    Article  CAS  Google Scholar 

  • Basu S, Khan AL, Cano-Odena A, Liu C, Vankelecom IF (2010) Membrane-based technologies for biogas separations. Chem Soc Rev 39:750–768

    Article  CAS  Google Scholar 

  • Bauer F, Persson T, Hulteberg C, Tamm D (2013) Biogas upgrading–technology overview, comparison and perspectives for the future. Biofuels Bioprod Biorefin 7:499–511

    Article  CAS  Google Scholar 

  • Bernhardsen IM, Knuutila HK (2017) A review of potential amine solvents for CO2 absorption process: absorption capacity, cyclic capacity and pKa. Int J Greenh Gas Con 61:27–48

    Article  CAS  Google Scholar 

  • BIS (2015) Biomethane standards. IS 16087. https://archive.org/details/gov.in.is.16087.2013. Accessed July 2015

  • Bonten LTC, Zwart KB, Rietra RPJ, Postma R, de Haas MJG (2014) Bio-slurry as fertilizer. Alterra Wageningen University, Wageningen https://www.nmi-agro.nl/images/NMI_Alterra_1527_Bioslurry.pdf. Accessed May 2017

    Google Scholar 

  • Boontawee S, Koonaphapdeelert S (2016) In-situ biomethane enrichment by recirculation of biogas channel digester effluent using gas stripping column. Energy Procedia 89:78–84

    Article  CAS  Google Scholar 

  • Budzianowski WM (2011) Benefits of biogas upgrading to biomethane by high-pressure reactive solvent scrubbing. Biofuels Bioprod Biorefin 6:12–20

    Article  CAS  Google Scholar 

  • Budzianowski WM (2016) A review of potential innovations for production, conditioning and utilization of biogas with multiple-criteria assessment. Renew Sust Energ Rev 54:1148–1171

    Article  Google Scholar 

  • Budzianowski WM, Wylock CE, Marciniak PA (2017) Power requirements of biogas upgrading by water scrubbing and biomethane compression: comparative analysis of various plant configurations. Energ Convers Manage 141:2–19

    Article  CAS  Google Scholar 

  • Burkhardt M, Koschack T, Busch G (2015) Biocatalytic methanation of hydrogen and carbon dioxide in an anaerobic three-phase system. Bioresour Technol 178:330–333

  • Canevesi RL, Andreassen KA, da Silva EA, Borba CE, Grande CA (2018) Pressure swing adsorption for biogas upgrading with carbon molecular sieve. Ind Eng Chem Res 57:8057–8067

    Article  CAS  Google Scholar 

  • Cansado IPP, Maurao PAM, Ribeiro Carrott ML, Carrott PJM (2010) Activated carbons prepared from natural and synthetic raw materials with potential applications in gas separations. Adv.Mater.Res 107:1–7

    Article  CAS  Google Scholar 

  • Cavenati S, Grande CA, Rodrigues AE (2004) Adsorption equilibrium of methane, carbon dioxide, and nitrogen on zeolite 13X at high pressures. J Chem Eng Data 49:1095–1101

    Article  CAS  Google Scholar 

  • Chaemchuen S, Kabir NA, Zhou K, Verpoort F (2013) Metal–organic frameworks for upgrading biogas via CO2 adsorption to biogas green energy. Chem Soc Rev 42:9304–9332

    Article  CAS  Google Scholar 

  • Chandra R, Vijay VK, Subbarao PMV (2012) Vehicular quality biomethane production from biogas by using an automated water scrubbing system, International Scholarly Research Network, ISRN Renewable Energy 2012

  • Chen XY, Vinh-Thang H, Ramirez AA, Rodrigue D, Kaliaguine S (2015) Membrane gas separation technologies for biogas upgrading. RSC Adv 5:24399–24448

    Article  CAS  Google Scholar 

  • Chmielewski AG, Urbaniak A, Wawryniuk K (2013) Membrane enrichment of biogas from two-stage pilot plant using agricultural waste as a substrate. Biomass Bioenergy 58:219–228

    Article  CAS  Google Scholar 

  • Choi WJ, Seo JB, Jang SY, Jung JY, Oh KJ (2009) Removal characteristics of CO2 using aqueous MEA/AMP solutions in the absorption and regeneration process. J Environ Sci 21:907–913

    Article  CAS  Google Scholar 

  • Corbellini V, Kougias PG, Treu L, Bassani I, Malpei F, Angelidaki I (2018) Hybrid biogas upgrading in a two-stage thermophilic reactor. Energy Convers Manag 168:1–10

    Article  CAS  Google Scholar 

  • Cozma P, Wukovits W, Mămăligă I, Friedl A, Gavrilescu M (2013) Analysis and modelling of the solubility of biogas components in water for physical absorption processes. Environ Eng Manag J (EEMJ) 1:147–162

    Google Scholar 

  • Cucchiella F, D’Adamo I (2016) Technical and economic analysis of biomethane: a focus on the role of subsidies. Energy Convers Manag 119:338–351

    Article  Google Scholar 

  • Devi P (2012) Status of bioenergy research and Jatropha in India: a review. In: Carels N, Sujatha M, Bahadur B (eds) Jatropha, challenges for a new energy crop. Springer, New York, NY

    Google Scholar 

  • Dindore VY, Brilman DW, Geuzebroek FH, Versteeg GF (2004) Membrane–solvent selection for CO2 removal using membrane gas–liquid contactors. Sep Purif Technol 40:133–145

    Article  CAS  Google Scholar 

  • Dolfing J, Jiang B, Henstra AM, Stams AJ, Plugge CM (2008) Syntrophic growth on formate: a new microbial niche in anoxic environments. Appl Environ Microbiol 74:6126–6131

    Article  CAS  Google Scholar 

  • Drosg B, Fuchs W, Seadi AL, Madsen M, & Linke B (2015) Nutrient recovery by biogas digestate processing. IEA Bioenergy (2015)

  • European Biogas Association (EBA) Statistical Report (2017) Annual Statistical Report of the European Biogas Association, European Biogas Association, Brussels. http://european-biogas.eu/wpcontent/uploads/2017/12/Statistical-report-of-the-European-Biogas-Association-web.pdf. Accessed August 2018

  • Galante CG, Pezzola L, Priano N, Scaramellini S, Sottocornola A (2012) Methane from biogas: the process, cleaning and projects. Norewegian University of Science and Technology, Trondheim

    Google Scholar 

  • Goffeng B (2013) Crynotechnology for biogas, Dept of ChemEng, Lund University. http://www.chemeng.lth.se/exjobb/E700.pdf

  • Götz M, Lefebvre J, Mörs F, McDaniel AK, Graf F, Bajohr S (2016) Renewable power-to-gas: a technological and economic review. Renew Energy 85:1371–1390

    Article  CAS  Google Scholar 

  • Grande CA (2011) Biogas upgrading by pressure swing adsorption. In: Biofuel’s engineering process technology. InTech. http://cdn.intechopen.com/pdfs/17476/InTech-Biogas_upgrading_by_pressure_swing_ adsorption.pdf. Accessed December 2015

  • Grande CA (2012) Advances in pressure swing adsorption for gas separation. ISRN Chemical Engineering. https://doi.org/10.5402/2012/982934

  • Grande CA, Rodrigues AE (2007) Biogas to fuel by vacuum pressure swing adsorption I. Behavior of equilibrium and kinetic-based adsorbents. Ind Eng Chem Res 46:4595-4605.https://www.worldenergy.org/wp-content/uploads/2017/03/WEResources _Bioenergy_ 2016.pdf. Accessed June 2018

  • Huertas JI, Giraldo N, Izquierdo S (2011) Removal of H2S and CO2 from biogas by amine absorption. Mass transfer in chemical engineering processes. INTECH Open Access Publisher, Rijeka. https://doi.org/10.5772/20039

    Book  Google Scholar 

  • Huguen P, Le Saux G (2010) Perspectives for a European standard on biomethane: a Biogasmax proposal. BIOGASMAX-Integrated Project. http://www.biogasmax.eu/media/d3_8_new_lmcu_bgx_eu_standard_14dec10_vf__077238500_0948_26012011.pdf. Accessed October 2014

  • de Hullu J, Maassen JI, Van Meel PA, Shazad S, Vaessen JM, Bini L, Reijenga JC (2008) Comparing different biogas upgrading techniques. Eindhoven University of Technology. https://www.scribd.com/document/46650259/Comparing-Different-Biogas-Upgrading-Techniques. Accessed July 2018

  • IPCC Intergovernmental panel on climate change (2013) Climate change 2013—the physical science basis. https://www.ipcc.ch/pdf/assessment-report/ar5/wg1/WG1AR5_Frontmatter_FINAL.pdf

  • IRENA (2017a) Synergies between renewable energy and energy efficiency, a working paper based on REmap. International Renewable Energy Agency (IRENA), Abu Dhabi www.irena.org/remap

    Google Scholar 

  • IRENA (2017b) Turning to renewables: climate-safe energy solutions. International Renewable Energy Agency, Abu Dhabi https://www.irena.org/publications/2017/Nov/Turning-to-renewables-Climate-safe-energy-solutions

    Google Scholar 

  • IRENA (2018) Global energy transformation: a roadmap to 2050. International Renewable Energy Agency, Abu Dhabi https://www.irena.org/publications/2018/Apr/Global-Energy-Transition-A-Roadmap-to-2050

    Google Scholar 

  • Jonerholm K, Lundborg H (2012) Methane losses in the biogas system. Baltic Biogas Bus Project. http://www.balticbiogasbus.eu/web/Upload/Supply_of_biogas /Act_4_6/Annex/Methane%20losses.pdf. Assessed July 2014

  • Jonsson S, Westman J (2011) Cryogenic biogas upgrading using plate heat exchangers. Department of Energy and Environment Division of Energy Technology. Chalmers University of Technology, Göteborg http://publications.lib.chalmers.se/records/fulltext/145544.pdf

    Google Scholar 

  • Kadam R, Panwar NL (2017) Recent advancement in biogas enrichment and its applications. Renew Sust Energ Rev 73:892–903

    Article  CAS  Google Scholar 

  • Kajolina T, Aakko-Saksa P, Roine J, Kall L (2015) Efficiency testing of three biogas siloxane removal systems in the presence of D5, D6, limonene and toluene. Fuel Process Technol 139:242–247

    Article  CAS  Google Scholar 

  • Kapoor R, Subbarao PM, Vijay VK, Shah G, Sahota S, Singh D, Verma M (2017) Factors affecting methane loss from a water scrubbing based biogas upgrading system. Appl Energy 208:1379–1388

    Article  CAS  Google Scholar 

  • Khan IU, Othman MH, Hashim H, Matsuura T, Ismail AF, Rezaei-Dasht Arzhandi M, Azelee IW (2017) Biogas as a renewable energy fuel—a review of biogas upgrading, utilisation and storage. Energy Convers Manag 150:277–294

    Article  CAS  Google Scholar 

  • Kim TJ, Baoan LI, Hägg MB (2004) Novel fixed-site-carrier polyvinylamine membrane for carbon dioxide capture. J Polym Sci B Polym Phys 42:4326–4336

    Article  CAS  Google Scholar 

  • Kougias PG, Treu L, Benavente DP, Boe K, Campanaro S, Angelidaki I (2017) Ex-situ biogas upgrading and enhancement in different reactor systems. Bioresour Technol 225:429–437

    Article  CAS  Google Scholar 

  • Kummamuru B (2017) Global bioenergy statistics. World Bioenergy Association (WBA) https://worldbioenergy.org/uploads/WBAGBS2017_hq.pdf

  • Läntelä J, Rasi S, Lehtinen J, Rintala J (2012) Landfill gas upgrading with pilot-scale water scrubber: performance assessment with absorption water recycling. Appl Energy 92:307–314

    Article  CAS  Google Scholar 

  • Lasocki J, Kołodziejczyk K, Matuszewska A (2015) Laboratory-scale investigation of biogas treatment by removal of hydrogen sulfide and carbon dioxide. Pol J Environ Stud 24:1427–1434

    Article  CAS  Google Scholar 

  • Lecker B, Illi L, Lemmer A, Oechsner H (2017) Biological hydrogen methanation—a review. Bioresour Technol 245:1220–1228

    Article  CAS  Google Scholar 

  • Li S, Falconer JL, Noble RD (2006) Improved SAPO-34 membranes for CO2/CH4 separations. Adv Mater 18:2601–2603

    Article  CAS  Google Scholar 

  • Li JR, Kuppler RJ, Zhou HC (2009) Selective gas adsorption and separation in metal-organic frameworks. Chem.Soc.Rev. 38(5):1477–1504

    Article  CAS  Google Scholar 

  • Li L, Voice AK, Li H, Namjoshi O, Nguyen O, Du Y, Rochelle G (2013) Amine blends using concentrated piperazine. Energy Procedia 37:353–369

    Article  CAS  Google Scholar 

  • Liu Y, Whitman WB (2008) Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea. Ann N Y Acad Sci 1125:171–189

    Article  CAS  Google Scholar 

  • Luo G, Angelidaki I (2013) Co-digestion of manure and whey for in situ biogas upgrading by the addition of H(2): process performance and microbial insights. Appl Microbiol Biotechnol 97:1373–1381

    Article  CAS  Google Scholar 

  • Luo G, Johansson S, Boe K, Xie L, Zhou Q, Angelidaki I (2012) Simultaneous hydrogen utilization and in situ biogas upgrading in an anaerobic reactor. Biotechnol Bioeng 4:1088–1094

    Article  CAS  Google Scholar 

  • Maile I and Muzenda E (2014) Int’l Conf. on Chemical Engineering & Advanced Computational Technologies (ICCEACT’2014), Nov. 24-25

  • Maile OI, Tesfagiorhis H, Muzenda E (2015) Factors influencing chemical absorption of CO2 and H2S in biogas purification: a review. Proceedings of the World Congress on Engineering and Computer Science (WCECS) Vol II, October 21–23, 2015, San Francisco, USA

  • Maile OI, Muzenda E, Tesfagiorhis H (2017) Chemical absorption of carbon dioxide in biogas purification. Procedia Manufacturing 7:639–646

    Article  Google Scholar 

  • Makhloufi C, Lasseugette E, Remigy JC, Belaissaoui B, Roizard D, Favre E (2014) Ammonia based CO2 capture process using hollow fiber membrane contactors. J Membr Sci 455:236–246

    Article  CAS  Google Scholar 

  • Mani F, Peruzzini M, Stoppioni P (2006) CO2 absorption by aqueous NH3 solutions: speciation of ammonium carbamate, bicarbonate and carbonate by a 13C NMR study. Green Chem 8:995–1000

    Article  CAS  Google Scholar 

  • Mcleod A, Jefferson B, McAdam EJ (2014) Biogas upgrading by chemical absorption using ammonia rich absorbents derived from wastewater. Water Res 67:175–186

    Article  CAS  Google Scholar 

  • Mittal S, Ahlgrena EO, Shukla PR (2018) Barriers to biogas dissemination in India: a review. Energy Policy 112:361–370

    Article  CAS  Google Scholar 

  • Mulat DG, Mosbæk F, Ward AJ, Polag D, Greule M, Keppler F, Nielsen JL, Feilberg A (2017) Exogenous addition of H2 for an in situ biogas upgrading through biological reduction of carbon dioxide into methane. Waste Manag 68:146–156

    Article  CAS  Google Scholar 

  • Muñoz R, Meier L, Diaz I, Jeison D (2015) A review on the state-of-the-art of physical/chemical and biological technologies for biogas upgrading. Rev Environ Sci Bio Journal 14(4):727–759

    Article  CAS  Google Scholar 

  • Nishimura N, Kitaura S, Mimura A, Takahara Y (1992) Cultivation of thermophilic methanogen KN-15 on H2-CO2 under pressurized conditions. J Ferment Bioeng 73:477–480. https://doi.org/10.1016/0922-338X(92)90141-G

  • Nock WJ, Walker M, Kapoor R, Heaven (2014) Modeling the water scrubbing process and energy requirements for CO2 capture to upgrade biogas to biomethane. Ind Eng Chem Res 53 (32):12783–12792

  • Ong MD, Williams RB, Kaffka SR (2014) Comparative assessment of technology options for biogas clean-up. Public Interest Energy Research (PIER) Program, Draft Interim Project report. California Biomass Collaborative. University of California, Davis

    Google Scholar 

  • Othman MR, Tan SC, Bhatia S (2009) Separability of carbon dioxide from methane using MFI zeolite-silica film deposited on gamma-alumina support. Microporous Mesoporous Mater 121:138–144

    Article  CAS  Google Scholar 

  • Patterson T, Esteves S, Dinsdale R, Guwy A (2011) An evaluation of the policy and techno-economic factors affecting the potential for biogas upgrading for transport fuel use in the UK. Energ Policy 39(3):1806–1816

    Article  Google Scholar 

  • Perry, R. H. (1984) Chemical engineers’ handbook, 50th edition

  • Persson M (2003) Evaluation of upgrading techniques for biogas. Report SGC. http://www.sgc.se/dokument/Evaluation.pdf. [Accessed on June 2018]

  • Persson M, Jönsson O, Wellinger A (2006) Biogas upgrading to vehicle fuel standards and grid injection. InIEA Bioenergy task 37:1–34

    Google Scholar 

  • Pertl A, Mostbauer P, Obersteiner G (2010) Climate balance of biogas upgrading systems. Waste Manag 30(1):92–99

    Article  CAS  Google Scholar 

  • Petersson A, Wellinger A (2009) Biogas upgrading technologies—developments and innovations. IEA bioenergy. 2009 Oct; 20:1-9. https://www.infothek-biomasse.ch/images/175_2009_IEABiogas_upgrading _technologies.pdf. Accessed June 2015

  • Pinghai S, Dal-Cin M, Kumar A, Li H, Singh DP (2012) Design and economics of a hybrid membrane–temperature swing adsorption process for upgrading biogas. J Membr Sci 413:17–28

    Google Scholar 

  • Rachbauer L, Voitl G, Bochmann G, Fuchs W (2016) Biological biogas upgrading capacity of a hydrogenotrophic community in a trickle-bed reactor. Appl Energy 180:483–490

    Article  CAS  Google Scholar 

  • Rasi S, Lantela J, Veijanen A, Rintala J (2008) Landfill gas upgrading with countercurrent water wash. Waste Manag 28:1528–1534

    Article  CAS  Google Scholar 

  • REN 21 (2017) Advancing the global renewable energy transition, highlights of the REN21 renewables, Global Status Report in perspective

  • Rinprasertmeechai S, Chaveda S, Rangsunvigit P, Kulprathipanja S (2012) Carbon dioxide removal from flue gas using amine-based hybrid solvent absorption. International Journal of Chemical and Biological Engineering 6

  • Ritter JA, Yang RT (1987) Equilibrium adsorption of multicomponent gas mixtures at elevated pressures. Ind Eng Chem Res 26(8):1679–1686

    Article  CAS  Google Scholar 

  • Rochelle G, Chen E, Freeman S, Wagener DV, Xu Q, Voice A (2011) Aqueous piperazine as the new standard for CO2 capture technology. Chem Eng J 171:725–733

    Article  CAS  Google Scholar 

  • Rotunno P, Lanzini A, Leone P (2017) Energy and economic analysis of a water scrubbing based biogas upgrading process for biomethane injection into the gas grid or use as transportation fuel. Renew Energy 102:417–432

    Article  CAS  Google Scholar 

  • Rufford TE, Smart S, Watson GCY, Graham BF, Boxall J, Diniz da Costa JC, May EF (2012) The removal of CO2 and N2 from natural gas : a review of conventional and emerging process technologies. J Pet Sci Eng 94-95:23–154

    Article  CAS  Google Scholar 

  • Ruthven DM, Farouw S, Knaebel KS (1994) Pressure swing adsorption. Wiley-VCH, New York, USA, p 1994

    Google Scholar 

  • Rutz D, Janssen R (2008) Biofuel technology handbook. WIP Renewable Energies, Munich

    Google Scholar 

  • Ryckebosch E, Drouillon M, Vervaeren H (2011) Techniques for transformation of biogas to biomethane. Biomass Bioenergy 1; 35(5):1633–1645

    Article  CAS  Google Scholar 

  • Saha D, Bao Z, Jia F, Deng S (2010) Adsorption of CO2, CH4, N2O, and N2 on MOF-5, MOF-177, and zeolite 5A. Environ.Sci.Technol 44:1820–1826

    Article  CAS  Google Scholar 

  • Sahota S, Shah G, Ghosh P, Kapoor R, Sengupta S, Singh P, Vijay V, Sahay A, Vijay VK, Thakur IS (2018) Review of trends in biogas upgradation technologies and future perspectives. Bioresour Technol Reports 1:79–88

    Article  Google Scholar 

  • Sarker AI, Aroonwilas A, Veawab A (2017) Equilibrium and kinetic behaviour of CO2 adsorption onto zeolites, carbon molecular sieve and activated carbons. Energy Procedia 114:2450–2459

    Article  CAS  Google Scholar 

  • Schmidt JE, Ahring BK (1993) Effects of hydrogen and formate on the degradation of propionate and butyrate in thermophilic granules from an upflow anaerobic sludge blanket reactor. Appl Environ Microbiol 59(8):2546–2551

    CAS  Google Scholar 

  • Scholz M, Melin T, Wessling M (2013a) Transforming biogas into biomethane using membrane technology. Renew Sust Energ Rev 1(17):199–212

    Article  CAS  Google Scholar 

  • Scholz M, Frank B, Stockmeier F, Falß S, Wessling M (2013b) Techno-economic analysis of hybrid processes for biogas upgrading. Ind Eng Chem Res 52(47):16929–16938

    Article  CAS  Google Scholar 

  • Shen J, Qiu J, Wu L, Gao C (2006) Facilitated transport of carbon dioxide through poly (2-N,N-dimethyl aminoethyl methacrylate-co-acrylic acid sodium) membrane. Sep Purif Technol 51:345–351

    Article  CAS  Google Scholar 

  • Song C, Liu Q, Ji N, Deng S, Zhao J, Li Y, Kitamura Y (2017) Reducing the energy consumption of membrane-cryogenic hybrid CO2 capture by process optimization. Energy 124:29–39

    Article  CAS  Google Scholar 

  • Statistics and Developments, European Biogas Association’s statistical report (2017) Newsletter IEA Bioenergy Task 37. http://task37.ieabioenergy.com/archive.html?file=files/daten-redaktion/download/newsletter/4th2018NewsletterTask37.pdf

  • Starr K, Gabarrell X, Villalba G, Talens L, Lomardi L (2012) Life cycle assessment of biogas upgrading technologies. Waste Manag 32:991–999

  • Starr K, Gabarrell X, Villalba G, Peiro LT, Lombardi L (2014) Potential CO2 savings through biomethane generation from municipal waste biogas. Biomass Bioenerg 62:8–16

  • Strübing D, Huber B, Lebuhn M, Drewes JE, Koch K (2017) High performance biological methanation in a thermophilic anaerobic trickle bed reactor. Bioresour Technol 245:1176–1183. https://doi.org/10.1016/j.biortech.2017.08.088

    Article  CAS  Google Scholar 

  • Sun Q, Li H, Yan J, Liu L, Yu Z, Yu X (2015) Selection of appropriate biogas upgrading technology-a review of biogas cleaning, upgrading and utilisation. Renew Sust Energ Rev 51:521–532

    Article  CAS  Google Scholar 

  • Swedish Gas Centre (SGC): Basic data on biogas, Swedish Gas Technology Centre, (2012) http://www.sgc.se/ckfinder/userfiles/files/BasicDataonBiogas2012.pdf. Accessed May 2015

  • Tagliabue M, Farrusseng D, Valencia S, Aguado S, Ravon U, Rizzo C, Corma A, Mirodatos C (2009) Natural gas treating by selective adsorption: material science and chemical engineering interplay. Chem Eng J 155(3):553–566

    Article  CAS  Google Scholar 

  • Thrän D, Billig E, Persson T, Svensson M, Daniel-Gromke J, Ponitka J, Seiffert M, Baldwin J, Kranzl L, Schipfer F, Matzenberger J (2014) Biomethane–status and factors affecting market development and trade. IEA task. Available at: http://task40.ieabioenergy.com/wpcontent/uploads/2013/09/t40-t37-biomethane-2014.pdf(accessed October 2017)

  • Tirunehe G, Norddahl B (2016) The influence of polymeric membrane gas spargers on hydrodynamics and mass transfer in bubble column bioreactors. Bioprocess Biosyst Eng 39:613–626

    Article  CAS  Google Scholar 

  • Tock L, Gassner M, Maréchal F (2010) Thermochemical production of liquid fuels from biomass: thermo-economic modelling, process design and process integration analysis. Biomass Bioenergy 34(12):1838–1854

    Article  CAS  Google Scholar 

  • Tynell Å. Microbial growth on pall-rings: a problem when upgrading biogas with the technique water absorption (2007) www.sgc.se

  • United Nations Industrial development organization (UNIDO) (2017) Biogas to biomethane, Fachverband Biogas, German Biogas Association, https://www.biogas-to-biomethane.com

  • Vrbova V, Ciahotný K (2017) Upgrading biogas to biomethane using membrane separation. Energy Fuel 31:9393–9401

    Article  CAS  Google Scholar 

  • VUT (2015). Overview of lean gas treatment in biogas upgrading systems. Institute of Chemical Engineering, Research Division, Thermal Process Engineering and Simulation. Vienna University of Technology (Austria), http://www.severnwye.org.uk/Bio-methaneRegions/downloads/D3-1-1/BMR_D3.1.1_Biogas_LeanGasTreatment_EN.pdf.AccessedJanuary2016

  • Wang Z, Yi C, Zhang Y, Wang J, Wang S (2006) CO2-facilitated transport through poly N-vinyl- -sodium aminobutyrate-co-sodium acrylate /polysulfone composite membranes. J Appl Polym Sci 100:275–282

    Article  CAS  Google Scholar 

  • Wang W, Xie L, Luo G, Zhou Q, Angelidaki I (2013) Performance and microbial community analysis of the anaerobic reactor with coke oven gas biomethanation and in situ biogas upgrading. Bioresour Technol 146:234–239

    Article  CAS  Google Scholar 

  • World Energy Council (2013) World energy resources: bioenergy.https://www.worldenergy.org/wp-content/uploads/2017/03/WEResources_Bioenergy_2016.pdf. Accessed August 2017

  • Wu B, Zhang X, Xu Y, Bao D, Zhang S (2015) Assessment of the energy consumption of the biogas upgrading process with pressure swing adsorption using novel adsorbents. J Clean Prod 101:251–261

    Article  CAS  Google Scholar 

  • Wu YM, Yang J, Fan XL, Fu SF, Sun MT, Guo RB (2017) Elimination of methane in exhaust gas from biogas upgrading process by immobilized methane-oxidizing bacteria. Bioresour Technol 231:124–128

    Article  CAS  Google Scholar 

  • Xiao Y, Yuan H, Pang Y, Chen S, Zhu B, Zou D, Yu L, Li X, Ma J (2014) CO2 removal from biogas by water washing system. Chin J Chem Eng 22:950–953

    Article  CAS  Google Scholar 

  • Yentekakis IV, Goula G (2017) Biogas management: advanced utilization for production of renewable energy and added-value chemicals. Front Environ Sci 5:7

    Article  Google Scholar 

  • Yi C, Wang Z, Li M, Wang J, Wang S (2006) Facilitated transport of CO2 through polyvinylamine/polyethlene glycol blend membranes. Desalination 193:90–96

    Article  CAS  Google Scholar 

  • Yousef AM, Eldrainy YA, El-Maghlany WM, Attia A (2016) Upgrading biogas by a low-temperature CO2 removal technique. Alexandria Engineering Journal 1;55(2):1143–1150

    Article  Google Scholar 

  • Yun YM, Sung S, Kang S, Kim MS, Kim DH (2017) Enrichment of hydrogenotrophic methanogens by means of gas recycle and its application in biogas upgrading. Energy 135:294–302

    Article  CAS  Google Scholar 

  • Zhang S, Yaping L, Jianfeng T, Tianjun N, Wei Y (2006) Operation appraisal and parameter optimization of imported skid-mounted natural gas dehydration unit. Nat Gas Ind 26:128–130

    CAS  Google Scholar 

  • Zhang Y, Sunarso J, Liu S, Wang R (2013) Current status and development of membranes for CO2/CH4 separation: a review. Int J Greenh Gas Con 12:84–107

    Article  CAS  Google Scholar 

  • Zhou K, Chaemchuena S, Verpoort F (2017) Alternative materials in technologies for biogas upgrading via CO2 capture. Renew Sust Energ Rev 79:1414–1441

    Article  CAS  Google Scholar 

Download references

Acknowledgement

We would like to express our sincere thanks to Indian Institute of Technology Delhi for providing institute post-doctoral fellowship to Kapoor R and Department of Science and Technology, Govt. of India for providing INSPIRE Faculty fellowship to Ghosh, P (DST/INSPIRE/04/2016/000362).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rimika Kapoor or Virendra Kumar Vijay.

Additional information

Responsible editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kapoor, R., Ghosh, P., Kumar, M. et al. Evaluation of biogas upgrading technologies and future perspectives: a review. Environ Sci Pollut Res 26, 11631–11661 (2019). https://doi.org/10.1007/s11356-019-04767-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-04767-1

Keywords

Navigation