Skip to main content
Log in

Nitrate removal from groundwater using negatively charged nanofiltration membrane

  • Appropriate Technologies to Combat Water Pollution
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

A commercial nanofiltration (NF) membrane was modified using poly(sodium 4-styrenesulfonate) (PSS) to improve the nitrate rejection from groundwater. Fourier transform infrared spectroscopy, thermogravimetric analysis, zeta potential, and water contact angle analyses were performed, showing that PSS was successfully coated onto the membrane with the surface negative charge density being enhanced. The results of nitrate removal tests showed that the best PSS concentration was 1.5 mg/L, with the nitrate rejection rate of 88.8% and the permeate flux of 27.0 L/m2 h. The effect of initial nitrate concentration and solution pH on the nitrate removal performance of the modified NF membrane was investigated. The results indicate that the modified NF membrane can improve nitrate removal from actual groundwater, with little membrane permeate flux loss.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahn SC, Oh SY, Cha DK (2008) Enhanced reduction of nitrate by zero-valent iron at elevated temperatures. J Hazard Mater 156:17–22

    CAS  Google Scholar 

  • Arias-Estévez M, López-Periago E, Martínez-Carballo E, Simal-Gándara J, Mejuto J-C, García-Río L (2008) The mobility and degradation of pesticides in soils and the pollution of groundwater resources. Agric Ecosyst Environ 123:247–260

    Google Scholar 

  • Bano S, Mahmood A, Kim S-J, Lee K-H (2015) Graphene oxide modified polyamide nanofiltration membrane with improved flux and antifouling properties. J Mater Chem A 3:2065–2071

    CAS  Google Scholar 

  • Baticle P, Kiefer C, Lakhchaf N, Larbot A, Leclerc O, Persin M, Sarrazin J (1997) Salt filtration on gamma alumina nanofiltration membranes fired at two different temperatures. J Membr Sci 135:1–8

    CAS  Google Scholar 

  • Bellona C, Drewes JE (2005) The role of membrane surface charge and solute physico-chemical properties in the rejection of organic acids by NF membranes. J Membr Sci 249:227–234

    CAS  Google Scholar 

  • Bruggen BVD, Vandecasteele C (2003) Removal of pollutants from surface water and groundwater by nanofiltration: overview of possible applications in the drinking water industry. Environ Pollut 122:435–445

    Google Scholar 

  • Chakrabortty S, Roy M, Pal P (2013) Removal of fluoride from contaminated groundwater by cross flow nanofiltration: transport modeling and economic evaluation. Desalination 313:115–124

    CAS  Google Scholar 

  • Chen YM, Li CW, Chen SS (2005) Fluidized zero valent iron bed reactor for nitrate removal. Chemosphere 59:753–759

    CAS  Google Scholar 

  • Cheng IF, Muftikian R, Fernando Q, Korte N (1997) Reduction of nitrate to ammonia by zero-valent iron. Chemosphere 35:2689–2695

    CAS  Google Scholar 

  • Childress AE, Elimelech M (2000) Relating nanofiltration membrane performance to membrane charge (electrokinetic) characteristics. Environ Sci Technol 34:3710–3716

    CAS  Google Scholar 

  • Christensen JB, Christensen TH (2000) The effect of pH on the complexation of Cd, Ni and Zn by dissolved organic carbon from leachate-polluted groundwater. Water Res 34:3743–3754

    CAS  Google Scholar 

  • Cortez S, Teixeira P, Oliveira R, Mota M (2011) Denitrification of a landfill leachate with high nitrate concentration in an anoxic rotating biological contactor. Biodegradation 22:661–671

    CAS  Google Scholar 

  • Dang HQ, Price WE, Nghiem LD (2014) The effects of feed solution temperature on pore size and trace organic contaminant rejection by the nanofiltration membrane NF270. Sep Purif Technol 125:43–51

    CAS  Google Scholar 

  • Drage TC, Arenillas A, Smith KM, Snape CE (2008) Thermal stability of polyethylenimine based carbon dioxide adsorbents and its influence on selection of regeneration strategies. Microporous Mesoporous Mater 116:504–512

    CAS  Google Scholar 

  • Epsztein R, Nir O, Lahav O, Green M (2015) Selective nitrate removal from groundwater using a hybrid nanofiltration–reverse osmosis filtration scheme. Chem Eng J 279:372–378

    CAS  Google Scholar 

  • Gayle BP, Boardman GD, Sherrard JH, Benoit RE (1989) Biological denitrification of water. J Environ Eng 115:930–943

    CAS  Google Scholar 

  • Ghafari S, Hasan M, Aroua MK (2008) Bio-electrochemical removal of nitrate from water and wastewater--a review. Bioresour Technol 99:3965–3974

    CAS  Google Scholar 

  • Hasar H, Unsal SA, Ipek U, Karatas S, Cinar O, Yaman C, Kinaci C (2009) Stripping/flocculation/membrane bioreactor/reverse osmosis treatment of municipal landfill leachate. J Hazard Mater 171:309–317

    CAS  Google Scholar 

  • Häyrynen K, Langwaldt J, Pongrácz E, Väisänen V, Mänttäri M, Keiski RL (2008) Separation of nutrients from mine water by reverse osmosis for subsequent biological treatment. Miner Eng 21:2–9

    Google Scholar 

  • Huang YH, Zhang TC (2004) Effects of low pH on nitrate reduction by iron powder. Water Res 38:2631–2642

    CAS  Google Scholar 

  • Jiang DD, Yao Q, McKinney MA, CA W (1999) TGA/FTIR studies on the thermal degradation of some polymeric sulfonic and phosphonic acids and their sodium salts. Polym Degrad Stab 63:423–434

    CAS  Google Scholar 

  • Jin KS, Na HS, Lee YM, Huh H, Nho YC (2001) Surface modification of polypropylene membranes by γ-ray induced graft copolymerization and their solute permeation characteristics. J Membr Sci 190:215–226

    Google Scholar 

  • Jin Z, Chen Y, Wang F, Ogura N (2004) Detection of nitrate sources in urban groundwater by isotopic and chemical indicators, Hangzhou City, China. Environ Geol 45:1017–1024

    CAS  Google Scholar 

  • Katsoyiannis IA, Zouboulis AI (2004) Biological treatment of Mn(II) and Fe(II) containing groundwater: kinetic considerations and product characterization. Water Res 38:1922–1932

    CAS  Google Scholar 

  • Kelewou H, Lhassani A, Merzouki M, Drogui P, Sellamuthu B (2011) Salts retention by nanofiltration membranes: physicochemical and hydrodynamic approaches and modeling. Desalination 277:106–112

    CAS  Google Scholar 

  • Kwon Y, Leckie J (2006) Hypochlorite degradation of crosslinked polyamide membranesII. Changes in hydrogen bonding behavior and performance. J Membr Sci 282:456–464

    CAS  Google Scholar 

  • Lai GS, Lau WJ, Goh PS, Ismail AF, Yusof N, Tan YH (2016) Graphene oxide incorporated thin film nanocomposite nanofiltration membrane for enhanced salt removal performance. Desalination 387:14–24

    CAS  Google Scholar 

  • Li X, Feyter SD, Chen D, Aldea S, Vandezande P, Prez FD, Vankelecom IFJ (2008) Solvent-resistant nanofiltration membranes based on multilayered polyelectrolyte complexes. Chem Mater 20:3876–3883

    CAS  Google Scholar 

  • Li J, Miao D, Yang R, Qu L, PdB H (2014) Synthesis of poly(sodium 4-styrenesulfonate) functionalized graphene/cetyltrimethylammonium bromide (CTAB) nanocomposite and its application in electrochemical oxidation of 2,4-dichlorophenol. Electrochim Acta 125:1–8

    Google Scholar 

  • Liou YH, Lo SL, Lin CI, Hu CY, Kuan WH, Weng SC (2005) Methods for accelerating nitrate reduction using zerovalent iron at near-neutral pH: effects of H2-reducing pretreatment and copper deposition. Environ Sci Technol 39:9643

    CAS  Google Scholar 

  • Liu J, Hu X, Wang X, Yao J, Sun D, Fan Z, Guo M (2014) Facile synthesis of hollow microspheres of polyaniline using poly(sodium 4-styrenesulfonate) as dopant. Polym Int 63:722–726

    CAS  Google Scholar 

  • Lockhart KM, King AM, Harter T (2013) Identifying sources of groundwater nitrate contamination in a large alluvial groundwater basin with highly diversified intensive agricultural production. J Contam Hydrol 151:140–154

    CAS  Google Scholar 

  • López-Muñoz MJ, Sotto A, Arsuaga JM, Van der Bruggen B (2009) Influence of membrane, solute and solution properties on the retention of phenolic compounds in aqueous solution by nanofiltration membranes. Sep Purif Technol 66:194–201

    Google Scholar 

  • McLay CDADR, Sparling G, Selvarajah N (2001) Predicting groundwater nitrate concentrations in a region of mixed agricultural land use: a comparison of three approaches. Environ Pollut 115:191–204

    CAS  Google Scholar 

  • Mohammad AW, Hilal N, Al-Zoubi H, Darwish NA (2007): Prediction of permeate fluxes and rejections of highly concentrated salts in nanofiltration membranes. J Membr Sci 289, 40–50

    CAS  Google Scholar 

  • Mohanty AK, Das D, Panigrahi AK, Misra M (1998) Synthesis and characterization of a novel polyamide: polycondensation of 2,5-diaminothiazole with terephthalic acid. Eur Polym J 34:1889–1892

    CAS  Google Scholar 

  • Paugam L, Taha S, Cabon J, Dorange G (2003) Elimination of nitrate ions in drinking waters by nanofiltration. Desalination 152:271–274

    CAS  Google Scholar 

  • Paugam L, Diawara CK, Schlumpf JP, Jaouen P, Quéméneur F (2004a) Transfer of monovalent anions and nitrates especially through nanofiltration membranes in brackish water conditions. Sep Purif Technol 40:237–242

    CAS  Google Scholar 

  • Paugam L, Taha S, Dorange G, Jaouen P, Quéméneur F (2004b) Mechanism of nitrate ions transfer in nanofiltration depending on pressure, pH, concentration and medium composition. J Membr Sci 231:37–46

    CAS  Google Scholar 

  • Pramoda KP, Chung TS, Liu SL, Oikawa H, Yamaguchi A (2000) Characterization and thermal degradation of polyimide and polyamide liquid crystalline polymers. Polym Degrad Stab 67:365–374

    CAS  Google Scholar 

  • Qian J, Wang L, Liu Y, Wu B, Wang X (2015) Distribution of nitrate and its implication for the contaminant source in groundwater of Huaibei Plain, Anhui Province. Geosci J 19:537–545

    CAS  Google Scholar 

  • Reddy AVR, Mohan DJ, Bhattacharya A, Shah VJ, Ghosh PK (2003) Surface modification of ultrafiltration membranes by preadsorption of a negatively charged polymer. J Membr Sci 214:211–221

    CAS  Google Scholar 

  • Reig M, Licon E, Gibert O, Yaroshchuk A, Cortina JL (2016) Rejection of ammonium and nitrate from sodium chloride solutions by nanofiltration: effect of dominant-salt concentration on the trace-ion rejection. Chem Eng J 303:401–408

    CAS  Google Scholar 

  • Richards LA, Vuachère M, Schäfer AI (2010) Impact of pH on the removal of fluoride, nitrate and boron by nanofiltration/reverse osmosis. Desalination 261:331–337

    CAS  Google Scholar 

  • Richards LA, Schafer AI, Richards BS, Corry B (2012) The importance of dehydration in determining ion transport in narrow pores. Small 8:1701–1709

    CAS  Google Scholar 

  • Richards LA, Richards BS, Corry B, Schäfer AI (2013a): Response to comment on “experimental energy barriers to anions transporting through nanofiltration membranes”. Environ Sci Technol 47, 8987–8988

  • Richards LA, Richards BS, Corry B, Schafer AI (2013b): Experimental energy barriers to anions transporting through nanofiltration membranes. Environ Sci Technol 47, 1968–1976

    CAS  Google Scholar 

  • Rivett MO, Buss SR, Morgan P, Smith JWN, Bemment CD (2008) Nitrate attenuation in groundwater: a review of biogeochemical controlling processes. Water Res 42:4215–4232

    CAS  Google Scholar 

  • Santafé-Moros A, Gozálvez-Zafrilla JM, Lora-García J (2005) Performance of commercial nanofiltration membranes in the removal of nitrate ions. Desalination 185:281–287

    Google Scholar 

  • Santafé-Moros A, Gozálvez-Zafrilla JM, Lora-García J (2007) Nitrate removal from ternary ionic solutions by a tight nanofiltration membrane. Desalination 204:63–71

    Google Scholar 

  • Santafé-Moros A, Gozálvez-Zafrilla JM, Lora-García J (2008) Applicability of the DSPM with dielectric exclusion to a high rejection nanofiltration membrane in the separation of nitrate solutions. Desalination 221:268–276

    Google Scholar 

  • Seman MNA, Khayet M, Hilal N (2010) Nanofiltration thin-film composite polyester polyethersulfone-based membranes prepared by interfacial polymerization. J Membr Sci 348:109–116

    Google Scholar 

  • Shu GHPH, Hwang BK (1994) Ionization of poly (ethylenimine) and pol (allylamine) at various ph’s. Bioorg Chem 22:318–327

    Google Scholar 

  • Soares MIM (2000) Biological denitrification of groundwater. Water Air Soil Pollut 123:183–193

    CAS  Google Scholar 

  • Strebel O, Duynisveld WHM, Böttcher J (1989) Nitrate pollution of groundwater in western Europe. Agric Ecosyst Environ 26:189–214

    CAS  Google Scholar 

  • Su M, Wang D-X, Wang X-L, Ando M, Shintani T (2006) Rejection of ions by NF membranes for binary electrolyte solutions of NaCl, NaNO3, CaCl2 and Ca(NO3)2. Desalination 191:303–308

    CAS  Google Scholar 

  • Thapinta A, Hudak PF (2003) Use of geographic information systems for assessing groundwater pollution potential by pesticides in Central Thailand. Environ Int 29:87–93

    CAS  Google Scholar 

  • Till BA, Weathers LJ, Alvarez PJJ (1998) Fe(0)-supported autotrophic denitrification. Environ Sci Technol 32:634–639

    CAS  Google Scholar 

  • Wang DX, Su M, Yu ZY, Wang XL, Ando M, Shintani T (2005) Separation performance of a nanofiltration membrane influenced by species and concentration of ions. Desalination 175:219–225

    CAS  Google Scholar 

  • Xu XC, Song CS, Andresen JM, Miller BG, Scaroni AW (2002) Novel polyethylenimine-modified mesoporous molecular sieve of MCM-41 type as high-capacity adsorbent for CO2 capture. Energy Fuel 16:1463–1469

    CAS  Google Scholar 

  • Xu HM, Wei JF, Wang XL (2014) Nanofiltration hollow fiber membranes with high charge density prepared by simultaneous electron beam radiation-induced graft polymerization for removal of Cr(VI). Desalination 346:122–130

    CAS  Google Scholar 

  • Zhang Y, Van der Bruggen B, Chen GX, Braeken L, Vandecasteele C (2004) Removal of pesticides by nanofiltration: effect of the water matrix. Sep Purif Technol 38:163–172

    CAS  Google Scholar 

Download references

Funding

This study was financially supported by the National Natural Science Foundation of China (51578329, 51778352), the Science and Technology Commission of Shanghai Municipality (16010500200, 18230710900), and Program for Innovative Research Team in University (IRT13078).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianyong Liu.

Additional information

Responsible editor: Angeles Blanco

Highlights

• Nitrate removal from water was enhanced by negatively charged NF membrane.

• Nitrate rejection rate was as high as 88.8% with a permeate flux of 27.0 L/m2 h.

• Modified NF membrane improved nitrate removal with little permeate flux loss.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, L., Zhang, S., Liu, J. et al. Nitrate removal from groundwater using negatively charged nanofiltration membrane. Environ Sci Pollut Res 26, 34197–34204 (2019). https://doi.org/10.1007/s11356-018-3829-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-3829-6

Keywords

Navigation