Skip to main content
Log in

Phylogenetic diversity and functional characterization of the Manila clam microbiota: a culture-based approach

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

According to the hologenome theory, the microbiota contributes to the fitness of the holobiont having an important role in its adaptation, survival, development, health, and evolution. Environmental stress also affects the microbiota and its capability to assist the holobiont in coping with stress factors. Here, we analyzed the diversity of cultivable bacteria associated with Manila clam tissues (mantle, gills, hemolymph) in two non-contaminated sites (Portugal and France) and one metal-contaminated site (Portugal). A total of 240 isolates were obtained. Representative isolates (n = 198) of the overall diversity were identified by 16S rDNA sequencing and subjected to functional characterization. Isolates affiliated with Proteobacteria, Actinobacteria, Firmicutes, and Bacteroidetes. Proteobacteria (mostly Pseudoalteromonadaceae and Vibrionaceae) were dominant in non-contaminated sites while Actinobacteria (mostly Microbacteriaceae) dominated in the metal-contaminated site. The main factor affecting the microbiota composition was contamination. No significant differences were observed between clam tissues and geographic regions. Several isolates tested positive for antibacterial activity, biofilm formation, protease, and siderophore production. The results show that the Manila clam harbors a diverse microbiota that may contribute to clam protection and overall fitness, as well as to its adaptation to stressful environments. In addition, the Manila clam microbiota is revealed as a promising source of novel probiotics with potential application in aquaculture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahmad I, Mohmood I, Mieiro CL et al (2011) Lipid peroxidation vs. antioxidant modulation in the bivalve Scrobicularia plana in response to environmental mercury—organ specificities and age effect. Aquat Toxicol 103:150–158. doi:10.1016/j.aquatox.2011.02.017

    Article  CAS  Google Scholar 

  • Ansari MI, Malik A (2007) Biosorption of nickel and cadmium by metal resistant bacterial isolates from agricultural soil irrigated with industrial wastewater. Bioresour Technol 98:3149–3153. doi:10.1016/j.biortech.2006.10.008

    Article  CAS  Google Scholar 

  • Auffret M, Oubella R (1995) Cytology and cytometric analysis of bivalve mollusc hemocytes. In: Stolen JS et al (eds) Techniques in fish immunology, Immunology and pathology of aquatic invertebrates, vol 4. SOS Publications, Fair Haven, pp 55–64

    Google Scholar 

  • Bauvais C, Zirah S, Piette L et al (2014) Sponging up metals: bacteria associated with the marine sponge Spongia officinalis. Mar Environ Res 104C:20–30. doi:10.1016/j.marenvres.2014.12.005

    Google Scholar 

  • Bull AT, Stach JEM (2007) Marine actinobacteria: new opportunities for natural product search and discovery. Trends Microbiol 15:491–499. doi:10.1016/j.tim.2007.10.004

    Article  CAS  Google Scholar 

  • Carballal MJ, Iglesias D, Santamarina J et al (2001) Parasites and pathologic conditions of the cockle Cerastoderma edule populations of the coast of Galicia (NW Spain). J Invertebr Pathol 78:87–97. doi:10.1006/jipa.2001.5049

    Article  CAS  Google Scholar 

  • Chen JZ, Tao XC, Xu J et al (2005) Biosorption of lead, cadmium and mercury by immobilized Microcystis aeruginosa in a column. Process Biochem 40:3675–3679. doi:10.1016/j.procbio.2005.03.066

    Article  CAS  Google Scholar 

  • Clarke KRGR (2006) PRIMER v6: user manual/tutorial. Prim, Plymouth

    Google Scholar 

  • Colwell RR, Grimes DJ (2000) Nonculturable microorganisms in the environment. American Society for Microbiology, Washington DC

    Book  Google Scholar 

  • Cordero D, Delgado M, Liu B et al (2017) Population genetics of the Manila clam (Ruditapes philippinarum) introduced in North America and Europe. Sci Rep 7:39745. doi:10.1038/srep39745

    Article  CAS  Google Scholar 

  • Cordero OX, Ventouras LA, DeLong EF, Polz MF (2012) Public good dynamics drive evolution of iron acquisition strategies in natural bacterioplankton populations. Proc Natl Acad Sci USA 109:20059–20064 doi.org/10.1073/pnas.1213344109

    Article  CAS  Google Scholar 

  • Dang MC (2009) Dynamique des populations de palourdes japonaises (Ruditapes philippinarum) dans le bassin d’Arcachon : conséquences sur la gestion des populations exploitées. Dissertation, L’Universite Bordeaux 1

  • De Carvalho CCCR, Fernandes P (2010) Production of metabolites as bacterial responses to the marine environment. Mar Drugs 8:705–727. doi:10.3390/md8030705

    Article  Google Scholar 

  • De Souza MJ, Nair S, Loka Bharathi PA, Chandramohan D (2006) Metal and antibiotic-resistance in psychrotrophic bacteria from Antarctic marine waters. Ecotoxicology 15:379–384. doi:10.1007/s10646-006-0068-2

    Article  Google Scholar 

  • Defer D, Desriac F, Henry J et al (2013) Antimicrobial peptides in oyster hemolymph: the bacterial connection. Fish Shellfish Immunol 34:1439–1447. doi:10.1016/j.fsi.2013.03.357

    Article  CAS  Google Scholar 

  • Desriac F, Le Chevalier P, Brillet B et al (2014) Exploring the hologenome concept in marine bivalvia: haemolymph microbiota as a pertinent source of probiotics for aquaculture. FEMS Microbiol Lett 350:107–116. doi:10.1111/1574-6968.12308

    Article  CAS  Google Scholar 

  • Dubert J, Barja JL, Romalde JL (2017) New insights into pathogenic Vibrios affecting bivalves in hatcheries: present and future prospects. Front Microbiol 8:762. doi:10.3389/fmicb.2017.00762

    Article  Google Scholar 

  • Dupont S, Carré-Mlouka A, Descarrega F et al (2014) Diversity and biological activities of the bacterial community associated with the marine sponge Phorbas tenacior (Porifera, Demospongiae). Lett Appl Microbiol 58:42–52. doi:10.1111/lam.12154

    Article  CAS  Google Scholar 

  • FAO (2014) Food and Agriculture Organization of the United Nations. Statistics. http://www.fao.org/fishery/statistics/en. Accessed 12 February 2017

  • Fidalgo C, Henriques I, Rocha J et al (2016) Culturable endophytic bacteria from the salt marsh plant Halimione portulacoides: phylogenetic diversity, functional characterization, and influence of metal(loid) contamination. Environ Sci Pollut Res. doi:10.1007/s11356-016-6208-1

  • Fleeger JW, Carman KR, Nisbet RM (2003) Indirect effects of contaminants in aquatic ecosystems. Sci Total Environ 317:207–233. doi:10.1016/S0048-9697(03)00141-4

    Article  CAS  Google Scholar 

  • Forney LJ, Zhou X, Brown CJ (2004) Molecular microbial ecology: land of the one-eyed king. Curr Opin Microbiol 7:210–220. doi:10.1016/j.mib.2004.04.015

    Article  CAS  Google Scholar 

  • Freitas R, Martins R, Campino B et al (2014) Trematode communities in cockles (Cerastoderma edule) of the Ria de Aveiro (Portugal): influence of inorganic contamination. Mar Pollut Bull 82:117–126. doi:10.1016/j.marpolbul.2014.03.012

    Article  CAS  Google Scholar 

  • Fuentes MS, Benimeli CS, Cuozzo SA, Amoroso MJ (2010) Isolation of pesticide-degrading actinomycetes from a contaminated site: bacterial growth, removal and dechlorination of organochlorine pesticides. Int Biodeterior Biodegrad 64:434–441. doi:10.1016/j.ibiod.2010.05.001

    Article  CAS  Google Scholar 

  • Gaspar MB (2010) Distribuição, abundância e estrutura demográfica da amêijoa japonesa (Ruditapes philippinarum) no Rio Tejo. Relatório do IPIMAR, p 6

  • Gibson LF (1998) Bacteriocin activity and probiotic activity of Aeromonas media. J Appl Microbiol 85(Suppl 1):243S–248S. doi:10.1111/j.1365-2672.1998.tb05304.x

    Article  Google Scholar 

  • Gibson LF, Woodworth J, George AM (1998) Probiotic activity of Aeromonas media on the Pacific oyster, Crassostrea gigas, when challenged with Vibrio tubiashii. Aquaculture 169:111–120. doi:10.1016/S0044-8486(98)00369-X

    Article  Google Scholar 

  • Goulletquer P, Lombas I, Prou J (1987) Influence du temps d’immersion sur l’activité reproductrice et sur la croissance de la palourde japonaise Ruditapes philippinarum et l’huître japonaise Crassostrea gigas. Haliotis 16:453–462

    Google Scholar 

  • Haber M, Ilan M (2014) Diversity and antibacterial activity of bacteria cultured from Mediterranean Axinella spp. sponges. J Appl Microbiol 116:519–532. doi:10.1111/jam.12401

    Article  CAS  Google Scholar 

  • Harris J (1993) The presence, nature, and role of gut microflora in aquatic invertebrates: a synthesis. Microb Ecol 25:195–231

    Article  CAS  Google Scholar 

  • Hasegawa H, Lind EJ, Boin MA, Häse CC (2008) The extracellular metalloprotease of Vibrio tubiashii is a major virulence factor for pacific oyster (Crassostrea gigas) larvae. Appl Environ Microbiol 74:4101–4110. doi:10.1128/AEM.00061-08

    Article  CAS  Google Scholar 

  • Hinsa-Leasure SM, Koid C, Tiedje JM, Schultzhaus JN (2013) Biofilm formation by Psychrobacter arcticus and the role of a large adhesin in attachment to surfaces. Appl Environ Microbiol 79:3967–3973. doi:10.1128/AEM.00867-13

    Article  CAS  Google Scholar 

  • Karouna-Renier NK, Snyder RA., Allison JG, et al (2007) Accumulation of organic and inorganic contaminants in shellfish collected in estuarine waters near Pensacola, Florida: contamination profiles and risks to human consumers. Environ Pollut 145:474–488. doi: 10.1016/j.envpol.2006.04.035

  • Kavamura VN, Esposito E (2010) Biotechnological strategies applied to the decontamination of soils polluted with heavy metals. Biotechnol Adv 28:61–69. doi:10.1016/j.biotechadv.2009.09.002

    Article  CAS  Google Scholar 

  • Kenneth JLV, Steve J, Marta G-C et al (2009) Bacterial community profiling of the eastern oyster (Crassostrea virginica): comparison of culture-dependent and culture-independent outcomes. J Shellfish Res 28:827–835. doi:10.2983/035.028.0412

    Article  Google Scholar 

  • Kesarcodi-Watson A, Miner P, Nicolas JL, Robert R (2012) Protective effect of four potential probiotics against pathogen-challenge of the larvae of three bivalves: Pacific oyster (Crassostrea gigas), flat oyster (Ostrea edulis) and scallop (Pecten maximus). Aquaculture 344–349:29–34. doi:10.1016/j.aquaculture.2012.02.029

    Article  Google Scholar 

  • Kim OS, Cho YJ, Lee K et al (2012) Introducing EzTaxon: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Micr 62:716–721. doi:10.1099/ ijs.0.038075-0

    Article  CAS  Google Scholar 

  • King GM, Judd C, Kuske CR, Smith C (2012) Analysis of stomach and gut microbiomes of the eastern oyster (Crassostrea virginica) from coastal Louisiana. USA PLoS One doi. doi:10.1371/journal.pone.0051475

  • Kobayashi T, Imada C, Hiraishi A et al (2003) Pseudoalteromonas sagamiensis sp. nov., a marine bacterium that produces protease inhibitors. Int J Syst Evol Microbiol 53:1807–1811. doi:10.1099/ijs.0.02516-0

    Article  CAS  Google Scholar 

  • Kvennefors ECE, Sampayo E, Kerr C et al (2012) Regulation of bacterial communities through antimicrobial activity by the coral holobiont. Microb Ecol 63:605–618. doi:10.1007/s00248-011-9946-0

    Article  CAS  Google Scholar 

  • Li XZ, Hauer B, Rosche B (2007) Single-species microbial biofilm screening for industrial applications. Appl Microbiol Biotechnol 76:1255–1262. doi:10.1007/s00253-007-1108-4

    Article  CAS  Google Scholar 

  • Longeon A, Peduzzi J, Barthélemy M et al (2004) Purification and partial identification of novel antimicrobial protein from marine bacterium Pseudoalteromonas species strain X153. Mar Biotechnol 6:633–641. doi:10.1007/s10126-004-3009-1

    Article  CAS  Google Scholar 

  • Mai-Prochnow A (2004) Biofilm development and cell death in the marine bacterium Pseudoalteromonas tunicata. Appl Environ Microbiol 70:3232–3238. doi:10.1128/AEM.70.6.3232

    Article  CAS  Google Scholar 

  • Mansson M, Gram L, Larsen TO (2011) Production of bioactive secondary metabolites by marine Vibrionaceae. Mar Drugs 9:1440–1468. doi:10.3390/md9091440

    Article  CAS  Google Scholar 

  • Meisterhans G, Raymond N, Girault E et al (2015) Structure of manila clam (Ruditapes philippinarum) microbiota at the organ scale in contrasting sets of individuals. Microb Ecol:194–206. doi:10.1007/s00248-015-0662-z

  • Merritt JH, Kadouri DE, Toole GAO (2011) Growing and analyzing static biofilms. 1–18. doi: 10.1002/9780471729259.mc01b01s22

  • Moorthy S, Watnick PI (2004) Genetic evidence that the Vibrio cholerae monolayer is a distinct stage in biofilm development. Mol Microbiol 52:573–587. doi:10.1111/j.1365-2958.2004.04000.x

    Article  CAS  Google Scholar 

  • Mydlarz LD, Jones LE, Harvell CD (2006) Innate immunity, environmental and disease ecology of marine and freshwater invertebrates. Annu Rev Ecol Evol Syst 37:251–288. doi:10.2307/annurev.ecolsys.37.091305.30000011

    Article  Google Scholar 

  • Paillard C, Le Roux F, Borrego JJ (2004) Bacterial disease in marine bivalves, a review of recent studies: trends and evolution. Aquat Living Resour 17:477–498. doi:10.1051/alr:2004054

    Article  Google Scholar 

  • Paul-Pont I, De Montaudouin X, Gonzalez P et al (2010a) Interactive effects of metal contamination and pathogenic organisms on the introduced marine bivalve Ruditapes philippinarum in European populations. Environ Pollut 158:3401–3410. doi:10.1016/j.envpol.2010.07.028

    Article  CAS  Google Scholar 

  • Paul-Pont I, de Montaudouin X, Gonzalez P et al (2010b) How life history contributes to stress response in the Manila clam Ruditapes philippinarum. Environ Sci Pollut Res Int 17:987–998. doi:10.1007/s11356-009-0283-5

    Article  CAS  Google Scholar 

  • Pereira ME, Lillebø AI, Pato P et al (2009) Mercury pollution in Ria de Aveiro (Portugal): a review of the system assessment. Environ Monit Assess 155:39–49. doi:10.1007/s10661-008-0416-1

    Article  CAS  Google Scholar 

  • Pérez-Miranda S, Cabirol N, George-Téllez R et al (2007) O-CAS, a fast and universal method for siderophore detection. J Microbiol Methods 70:127–131. doi:10.1016/j.mimet.2007.03.023

    Article  Google Scholar 

  • Pierce M, Ward J, Holohan B et al (2016) The influence of site and season on the gut and pallial fluid microbial communities of the eastern oyster, Crassostrea virginica (Bivalvia, Ostreidae): community-level physiological profiling and genetic structure. Hydrobiologia 765:97–113. doi:10.1007/s10750-015-2405-z

    Article  CAS  Google Scholar 

  • Polti MA, Aparicio JD, Benimeli CS, Amoroso MJ (2014) Simultaneous bioremediation of Cr(VI) and lindane in soil by Actinobacteria. Int Biodeterior Biodegrad 88:48–55. doi:10.1016/j.ibiod.2013.12.004

    Article  CAS  Google Scholar 

  • Prado S, Dubert J, Barja J (2013) Studies on the microbiota associated with clams in hatcheries. In: Gonzalez F d C (ed) Clam fisheries and aquaculture. Nova Science Publishers, New York, pp 191–216

    Google Scholar 

  • Prado S, Montes J, Romalde JL, Barja JL (2009) Inhibitory activity of Phaeobacter strains against aquaculture pathogenic bacteria. Int Microbiol 12:107–114. doi:10.2436/20.1501.01.87

    Google Scholar 

  • Richards GP, Watson MA, Needleman DS et al (2015) Mortalities of Eastern and Pacific oyster larvae caused by the pathogens Vibrio coralliilyticus and Vibrio tubiashii. Appl Environ Microbiol 81:292–297. doi:10.1128/AEM.02930-14

    Article  Google Scholar 

  • Riquelme C, Araya R, Vergara N et al (1997) Potential probiotic strains in the culture of the Chilean scallop Argopecten purpurants (Lamarck, 1819). Aquaculture 154:17–26. doi:10.1016/S0044-8486(97)00043-4

    Article  Google Scholar 

  • Romalde JL, Diéguez AL, Doce A, et al. (2013) Advances in the knowledge of the microbiota associated with clams from natural beds. In: Gonzalez F da C (ed) Clam fisheries and aquaculture. Nova Science Publishers, New York, pp 191–216

  • Romalde JL, Diéguez AL, Lasa A, Balboa S (2014) New Vibrio species associated to molluscan microbiota: a review. Front Microbiol 4:413. doi:10.3389/fmicb.2013.00413

    Article  Google Scholar 

  • Romanenko L, Uchino M, Kalinovskaya NI, Mikhailov VV (2008) Isolation, phylogenetic analysis and screening of marine mollusc-associated bacteria for antimicrobial, hemolytic and surface activities. Microbiol Res 163:633–644. doi:10.1016/j.micres.2006.10.001

    Article  Google Scholar 

  • Rosenberg E, Koren O, Reshef L et al (2007) The role of microorganisms in coral health, disease and evolution. Nat Rev Microbiol 5:355–362. doi:10.1038/nrmicro1635

    Article  CAS  Google Scholar 

  • Rosenberg E, Zilber-Rosenberg I (2016) Microbes drive evolution of animals and plants: the hologenome concept 7:1–8. doi: 10.1128/mBio.01395-15.Editor

  • Santos OCS, Pontes PVML, Santos JFM et al (2010) Isolation, characterization and phylogeny of sponge-associated bacteria with antimicrobial activities from Brazil. Res Microbiol 161:604–612. doi:10.1016/j.resmic.2010.05.013

    Article  CAS  Google Scholar 

  • Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56

    Article  CAS  Google Scholar 

  • So N, Rho J, Lee S et al (2001) A lead-absorbing protein with superoxide dismutase activity from Streptomyces subrutilus. FEMS Microbiol Lett 194:93–98

    Article  CAS  Google Scholar 

  • Thomas F, Hehemann JH, Rebuffet E et al (2011) Environmental and gut Bacteroidetes: the food connection. Front Microbiol 2:1–16 doi.org/10.3389/fmicb.2011.00093

    Article  Google Scholar 

  • Trabal Fernández N, Mazón-Suástegui JM, Vázquez-Juárez R et al (2014) Changes in the composition and diversity of the bacterial microbiota associated with oysters (Crassostrea corteziensis, Crassostrea gigas and Crassostrea sikamea) during commercial production. FEMS Microbiol Ecol 88:69–83. doi:10.1111/1574-6941.12270

    Article  Google Scholar 

  • Troy EB, Kasper DL (2010) Advances in the knowledge of the microbiota associated polysaccharides on the immune system Front Biosci (Landmark Ed 15:25–34

  • Velez C, Galvão P, Longo R et al (2015) Ruditapes philippinarum and Ruditapes decussatus under Hg environmental contamination. Environ Sci Pollut Res. doi:10.1007/s11356-015-4397-7

  • Wegner KM, Volkenborn N, Peter H, Eiler A (2013) Disturbance induced decoupling between host genetics and composition of the associated microbiome. BMC Microbiol 13:252. doi:10.1186/1471-2180-13-252

    Article  Google Scholar 

  • You J, Xue X, Cao L et al (2007) Inhibition of Vibrio biofilm formation by a marine actinomycete strain A66. Appl Microbiol Biotechnol 76:1137–1144. doi:10.1007/s00253-007-1074-x

    Article  CAS  Google Scholar 

  • You JL, Cao LX, Liu GF et al (2005) Isolation and characterization of actinomycetes antagonistic to pathogenic Vibrio spp. from nearshore marine sediments. World J Microbiol Biotechnol 21:679–682. doi:10.1007/s11274-004-3851-3

    Article  Google Scholar 

  • Zilber-Rosenberg I, Rosenberg E (2008) Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution. FEMS Microbiol Rev 32:723–735. doi:10.1111/j.1574-6976.2008.00123.x

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by European Funds (FEDER) through COMPETE and by National Funds through the Portuguese Foundation for Science and Technology (FCT) to CESAM (UID/AMB/50017/2013-POCI-01-0145-FEDER-007638), Artur Alves (FCT Investigator Programme-IF/00835/2013), Isabel Henriques (FCT Investigator Programme-IF/00492/2013), and Laura Leite (PhD grant SFRH/BD/86879/2012). The authors acknowledge financing from the Programa de Ações Universitárias Integradas Luso-Francesas (PAUILF-ref.: TC-08_12).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Artur Alves.

Additional information

Responsible editor: Diane Purchase

Electronic supplementary material

ESM 1

(DOCX 224 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leite, L., Jude-Lemeilleur, F., Raymond, N. et al. Phylogenetic diversity and functional characterization of the Manila clam microbiota: a culture-based approach. Environ Sci Pollut Res 24, 21721–21732 (2017). https://doi.org/10.1007/s11356-017-9838-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-9838-z

Keywords

Navigation