Skip to main content
Log in

Microbiome profile of the Antarctic clam Laternula elliptica

  • Environmental Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

A Correction to this article was published on 17 January 2024

This article has been updated

Abstract

The filter feeder clam Laternula elliptica is a key species in the Antarctic ecosystem. As a stenothermal benthic species, it has a poor capacity for adaptation to small temperature variations. Despite their ecological importance and sensitivity to climate change, studies on their microbiomes are lacking. The goal of this study was to characterize the bacterial communities of L. elliptica and the tissues variability of this microbiome to provide an initial insight of host-microbiota interactions. We investigated the diversity and taxonomic composition of bacterial communities of L. elliptica from five regions of the body using high-throughput 16S rRNA gene sequencing. The results showed that the microbiome of L. elliptica tended to differ from that of the surrounding seawater samples. However, there were no significant differences in the microbial composition between the body sites, and only two OTUs were present in all samples, being considered core microbiome (genus Moritella and Polaribacter). No significant differences were detected in diversity indexes among tissues (mean 626.85 for observed OTUs, 628.89 Chao1, 5.42 Shannon, and 0.87 Simpson). Rarefaction analysis revealed that most tissues reached a plateau of OTU number according to sample increase, with the exception of Siphon samples. Psychromonas and Psychrilyobacter were particularly abundant in L. elliptica whereas Fluviicola dominated seawater and siphons. Typical polar bacteria were Polaribacter, Shewanella, Colwellia, and Moritella. We detected the prevalence of pathogenic bacterial sequences, particularly in the family Arcobacteraceae, Pseudomonadaceae, and Mycoplasmataceae. The prokaryotic diversity was similar among tissues, as well as their taxonomic composition, suggesting a homogeneity of the microbiome along L. elliptica body. The Antarctic clam population can be used to monitor the impact of human activity in areas near Antarctic stations that discharge wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Change history

References

  1. Ahn IY (1994) Ecology of the Antarctic bivalve Laternula elliptica (King and Broderip) in Collins harbor, King George Island: benthic environment and adaptative strategy. Mem Natl Inst Polar Res (Tokyo), Spec Issue 50:1–10

    Google Scholar 

  2. Pierce ML, Ward JE (2018) Microbial ecology of the Bivalvia, with an emphasis on the Family Ostreidae. J Shellfish Res 37:793–806. https://doi.org/10.2983/035.037.041

    Article  Google Scholar 

  3. Clark MS, Thorne MA, Vieira FA, Cardoso JC, Power DM, Peck LS (2010) Insights into shell deposition in the Antarctic bivalve Laternula elliptica: gene discovery in the mantle transcriptome using 454 pyrosequencing. BMC Genom 11:362. https://doi.org/10.1186/1471-2164-11-362

    Article  CAS  Google Scholar 

  4. Peck L (2002) Ecophysiology of Antarctic marine ectotherms: limits to life. Polar Biol 25:31–40. https://doi.org/10.1007/s003000100308

    Article  Google Scholar 

  5. Peck LS, Webb KE, Bailey DM (2004) Extreme sensitivity of biological function to temperature in Antarctic marine species. Funct. Ecology 18:625–630. https://doi.org/10.1111/j.0269-8463.2004.00903.x

    Article  Google Scholar 

  6. Moreno-Pino M, Cristi A, Gillooly JF, Trefault N (2020) Characterizing the microbiomes of Antarctic sponges: a functional metagenomic approach. Sci Rep 10:645. https://doi.org/10.1038/s41598-020-57464-2

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lo Giudice A, Azzaro M, Schiaparelli S (2019) Microbial symbionts of Antarctic marine benthic invertebrates. In: Castro-Sowinski S (ed) The Ecological Role of Micro-Organisms in the Antarctic Environment. Springer International Publishing, Cham, pp 277–296. https://doi.org/10.1007/978-3-030-02786-5_13

    Chapter  Google Scholar 

  8. Pita L, Rix L, Slaby BM, Franke A, Hentschel U (2018) The sponge holobiont in a changing ocean: from microbes to ecosystems. Microbiome 6:46. https://doi.org/10.1186/s40168-018-0428-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hentschel U, Hopke J, Horn M, Friedrich AB, Wagner M, Hacker J, Moore BS (2002) Molecular evidence for a uniform microbial community in sponges from different oceans. Appl Environ Microbiol 68(9):4431–4440. https://doi.org/10.1128/AEM.68.9.4431-4440.2002

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wilson MC, Mori T, Rückert C, Uria AR, Helf MJ, Takada K, Gernert C, Steffens UAE, Heycke N, Schmiu S, Rinke C, Helfrich EJN, Brachmann AO, Gurgui C, Wakimoto T, Kracht M, Crüsemann M, Hentschel U, Abe I et al (2014) An environmental bacterial taxon with a large and distinct metabolic repertoire. Nature 506:58–62. https://doi.org/10.1038/nature12959

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Slaby BM, Hackl T, Horn H, Bayer K, Hentschel U (2017) Metagenomic binning of a marine sponge microbiome reveals unity in defense but metabolic specialization. ISME J 11:2465–2478. https://doi.org/10.1038/ismej.2017.101

    Article  PubMed  PubMed Central  Google Scholar 

  12. Thomas T, Rusch D, DeMaere MZ, Yung PY, Lewis M, Halpern A, Heidelberg KB, Egan S, Steinberg PD, Kjelleberg S (2010) Functional genomic signatures of sponge bacteria reveal unique and shared features of symbiosis. ISME J 4:1557–1567. https://doi.org/10.1038/ismej.2010.74

    Article  CAS  PubMed  Google Scholar 

  13. Trabal Fernández N, Mazón-Suástegui JM, Vázquez-Juárez R, Ascencio-Valle F, Romero J (2014) Changes in the composition and diversity of the bacterial microbiota associated with oysters (Crassostrea corteziensis, Crassostrea gigas and Crassostrea sikamea) during commercial production. FEMS Microbiol Ecol 88(1):69–83. https://doi.org/10.1111/1574-6941.12270

    Article  CAS  PubMed  Google Scholar 

  14. Trabal N, Mazón-Suástegui JM, Vázquez-Juárez R, Asencio-Valle F, Morales-Bojórquez E, Romero J (2012) Molecular analysis of bacterial microbiota associated with oysters (Crassostrea gigas and Crassostrea corteziensis) in different growth phases at two cultivation sites. Microb Ecol 64(2):555–569. https://doi.org/10.1007/s00248-012-0039-5

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Pierce ML, Ward JE, Holohan BA, Zhao X, Hicks RE (2016) The influence of site and season on the gut and pallial fluid microbial communities of the Eastern oyster, Crassostrea virginica (Bivalvia, Ostreidae): community-level physiological profiling and genetic structure. Hydrobiologia 765:97–113. https://doi.org/10.1007/s10750-015-2405-z

    Article  CAS  Google Scholar 

  16. Li YF, Xu JK, Chen YW, Ding WY, Shao AQ, Liang X, Zhu YT, Yang JL (2019) Characterization of gut microbiome in the mussel Mytilus galloprovincialis in response to thermal stress. Front Physiol 10:1086. https://doi.org/10.3389/fphys.2019.01086

    Article  PubMed  PubMed Central  Google Scholar 

  17. Yang LG, Lv LL, Liu HJ, Wang MR, Sui YM, Wang YJ (2020) Effects of ocean acidification and microplastics on microflora community composition in the digestive tract of the thick shell mussel Mytilus coruscus through 16S RNA gene sequencing. Bull Environ Contam Toxicol:1–10. https://doi.org/10.1007/s00128-020-03022-5

  18. Ullah Khan F, Shang Y, Chang X, Kong H, Zuberi A, Fang JK, Liu W, Peng J, Zhang X, Hu M, Wang Y (2021) Effects of ocean acidification, hypoxia, and warming on the gut microbiota of the thick shell mussel Mytilus coruscus through 16S rRNA gene sequencing. Front Mar Sci 8:736338

    Article  Google Scholar 

  19. Scanes E, Parker LM, Seymour JR, Siboni N, King WL, Wegner KM, Dove MC, O'Connor WA, Ross PM (2021) Microbiome response differs among selected lines of Sydney rock oysters to ocean warming and acidification. FEMS Microbiol Ecol 97(8):fiab099. https://doi.org/10.1093/femsec/fiab099

    Article  CAS  PubMed  Google Scholar 

  20. Wendling CC, Fabritzek AG, Wegner KM (2017) Population-specifc genotype x genotype x environment interactions in bacterial disease of early life stages of Pacifc oyster larvae. Evol Appl 10:338–347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Alma L, Kram KE, Holtgrieve GW, Barbarino A, Fiamengo CJ, Padilla-Gamiño JL (2020) Ocean acidification and warming effects on the physiology, skeletal properties, and microbiome of the purple-hinge rock scallop. Comp Biochem Physiol Part A Mol Integr Physiol 240:110579. https://doi.org/10.1016/j.cbpa.2019.110579

    Article  CAS  Google Scholar 

  22. Rodríguez-Marconi S, De la Iglesia R, Díez B, Fonseca CA, Hajdu E, Trefault N (2015) Characterization of bacterial, archaeal and eukaryote symbionts from Antarctic sponges reveals a high diversity at a three-domain level and a particular signature for this ecosystem. PloS One 10(9):e0138837. https://doi.org/10.1371/journal.pone.0138837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Clarke LJ, Suter L, King R, Bisseu A, Deagle BE (2019) Antarctic krill are reservoirs for distinct southern ocean microbial communities. Front Microbiol 9:3226. https://doi.org/10.3389/fmicb.2018.03226

    Article  PubMed  PubMed Central  Google Scholar 

  24. Cui X, Zhu G, Liu H, Jiang G, Wang Y, Zhu W (2016) Diversity and function of the Antarctic krill microorganisms from Euphausia superba. Sci Rep 6:36496. https://doi.org/10.1038/srep3649

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. Schwob G, Cabrol L, Poulin E, Orlando J (2020) Characterization of the gut microbiota of the Antarctic heart urchin (Spatangoida) Abatus agassizii. Front Microbiol 11:308

    Article  PubMed  PubMed Central  Google Scholar 

  26. Thibodeau PS, Song B, Moreno CM, Steinberg DK (2022) Feeding ecology and microbiome of the pteropod Limacina helicina antarctica. Aquat Microb Ecol 88:19–24

    Article  Google Scholar 

  27. Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, Alexander H, Alm EJ, Arumugam M et al (2019) Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol 37(8):852–857. https://doi.org/10.1038/s41587-019-0209-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP (2016) DADA2: High resolution sample inference from Illumina amplicon data. Nat Methods 13:581–583. https://doi.org/10.1038/nmeth.3869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Christian Q, Elmar P, Pelin Y, Jan G, Timmy S, Pablo Y, Jörg P, Oliver GF (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–D596. https://doi.org/10.1093/nar/gks1219

    Article  CAS  Google Scholar 

  30. Bardou P, Mariette J, Escudié F, Djemiel C, Klopp C (2014) jvenn: an interactive Venn diagram viewer. BMC Bioinform 15(1):293. https://doi.org/10.1186/1471-2105-15-293

    Article  Google Scholar 

  31. Anderson M, Gorley RN, Clarke KR (2008) PERMANOVA+ for PRIMER: guide to software and statistical methods. PRIMER-E Ltd, Plymouth Marine Laboratory, Plymouth, p 214

  32. Brothers CJ, Van Der Pol WJ, Morrow CD, Hakim JA, Koo H (1881) McClintock JB (2018) Ocean warming alters predicted microbiome functionality in a common sea urchin. Proc Biol Sci 285:20180340. https://doi.org/10.1098/rspb.2018.0340

    Article  CAS  Google Scholar 

  33. Hakim JA, Schram JB, Galloway AWE, Morrow CD, Crowley MR, Watts SA, Bej AK (2019) The purple sea urchin Strongylocentrotus purpuratus demonstrates a compartmentalization of gut bacterial microbiota, predictive functional attributes, and taxonomic co-occurrence. Microorganisms 7(2):35. https://doi.org/10.3390/microorganisms7020035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Guibert I, Lecellier G, Torda G, Pochon X, Berteaux-Lecellier V (2020) Metabarcoding reveals distinct microbiotypes in the giant clam Tridacna maxima. Microbiome 8(1):57. https://doi.org/10.1186/s40168-020-00835-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Moitinho-Silva L, Nielsen S, Amir A, Gonzalez A, Ackermann GL, Cerrano C, Astudillo-Garcia C, Easson C, Sipkema D, Liu F, Steinert G, Kotoulas G, McCormack GP, Feng G, Bell JJ, Vicente J, Björk JR, Montoya JM, Olson JB et al (2017) The sponge microbiome project. GigaScience 6(10):1–7. https://doi.org/10.1093/gigascience/gix077

    Article  PubMed  Google Scholar 

  36. Webster NS, Negri AP, Munro MM, Battershill CN (2004) Diverse microbial communities inhabit Antarctic sponges. Environ Microbiol 6(3):288–300. https://doi.org/10.1111/j.1462-2920.2004.00570.x

    Article  PubMed  Google Scholar 

  37. Cárdenas CA, González-Aravena M, Font A, Hestetun JT, Hajdu E, Trefault N, Malmberg M, Bongcam-Rudloff E (2018) High similarity in the microbiota of cold-water sponges of the Genus Mycale from two different geographical areas. PeerJ 6:e4935. https://doi.org/10.7717/peerj.4935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Murray AE, Rack FR, Zook R, Williams MJ, Higham ML, Broe M, Kaufmann RS, Daly M (2016) Microbiome composition and diversity of the ice-dwelling sea anemone, Edwardsiella andrillae. Integr Comp Biol 56(4):542–555. https://doi.org/10.1093/icb/icw095

    Article  PubMed  Google Scholar 

  39. Liu X, Teixeira JS, Ner S, Ma KV, Petronella N, Banerjee S, Ronholm J (2020) Exploring the potential of the microbiome as a marker of the geographic origin of fresh seafood. Front Microbiol 11:696. https://doi.org/10.3389/fmicb.2020.00696

    Article  PubMed  PubMed Central  Google Scholar 

  40. Ainsworth TD, Krause L, Bridge T, Torda G, Raina JB, Zakrzewski M, Gates RD, Padilla-Gamiño JL, Spalding HL, Smith C, Woolsey ES, Bourne DG, Bongaerts P, Hoegh-Guldberg O, Leggat W (2015) The coral core microbiome identifies rare bacterial taxa as ubiquitous endosymbionts. ISME J 9:2261–2274. https://doi.org/10.1038/ismej.2015.39

    Article  CAS  Google Scholar 

  41. León-Palmero E, Joglar V, Álvarez PA, Martín-Platero A, Llamas I, Reche I (2018) Diversity and antimicrobial potential in sea anemone and holothurian microbiomes. PloS One 13:e0196178. https://doi.org/10.1371/journal.pone.0196178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hakim JA, Koo H, Kumar R, Lefkowitz EJ, Morrow CD, Powell ML, Watts SA, Bej AK (2016) The gut microbiome of the sea urchin, Lytechinus variegatus, from its natural habitat demonstrates selective attributes of microbial taxa and predictive metabolic profiles. FEMS Microbiol Ecol 92(9):fiw146. https://doi.org/10.1093/femsec/fiw146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kawasaki K, Nogi Y, Hishinuma M, Nodasaka Y, Matsuyama H, Yumoto I (2002) Psychromonas marina sp. nov., a novel halophilic, facultatively psychrophilic bacterium isolated from the coast of the Okhotsk Sea. Int J Syst Evol Microbiol 52(5):1455–1459. https://doi.org/10.1099/00207713-52-5-1455

    Article  PubMed  Google Scholar 

  44. Nichols DS (2003) Prokaryotes and the input of polyunsaturated fatty acids to the marine food web. FEMS Microbiol Lett 219(1):1–7. https://doi.org/10.1016/S0378-1097(02)01200-4

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  45. Fernandez-Piquer J, Bowman JP, Ross T, Tamplin ML (2012) Molecular analysis of the bacterial communities in the live Pacific oyster (Crassostrea gigas) and the influence of postharvest temperature on its structure. J Appl Microbiol 112(6):1134–1143. https://doi.org/10.1111/j.1365-2672.2012.05287.x

    Article  CAS  PubMed  Google Scholar 

  46. Zhao JS, Manno D, Hawari J (2009) Psychrilyobacter atlanticus gen. nov., a marine member of the phylum Fusobacteria that produces H2 and degrades nitramine explosives under low temperature conditions. Int J Syst Evol Microbiol 59:491–497. https://doi.org/10.1099/ijs.0.65263-0

    Article  CAS  PubMed  Google Scholar 

  47. Yao Q, Yu K, Liang J, Wang Y, Hu B, Huang X, Chen B, Qin Z (2019) The composition, diversity and predictive metabolic profiles of bacteria associated with the gut digesta of five sea urchins in Luhuitou Fringing Reef (Northern South China Sea). Front Microbiol 10:1168. https://doi.org/10.3389/fmicb.2019.01168

    Article  PubMed  PubMed Central  Google Scholar 

  48. Gosink JJ, Woese CR, Staley JT (1998) Polaribacter gen. nov., with three new species, P. irgensii sp. nov., P. franzmannii sp. nov. and P. filamentus sp. nov., gas vacuolate polar marine bacteria of the Cytophaga-Flavobacterium-Bacteroides group and reclassification of 'Flectobacillus glomeratus' as Polaribacter glomeratus comb. nov. Int J Syst Bacteriol 48:223–235. https://doi.org/10.1099/00207713-48-1-223

    Article  PubMed  Google Scholar 

  49. Ivanova EP, Sawabe T, Zhukova NV, Gorshkova NM, Nedashkovskaya OI, Hayashi K, Frolova GM, Sergeev AF, Pavel KG, Mikhailov VV, Nicolau DV (2003) Occurrence and diversity of mesophilic Shewanella strains isolated from the North-West Pacific Ocean. Syst Appl Microbiol 26(2):293–301. https://doi.org/10.1078/072320203322346155

    Article  CAS  PubMed  Google Scholar 

  50. González-Aravena M, Urtubia R, Del Campo K, Lavín P, Wong C, Cárdenas C, González-Rocha G (2016) Antibiotic and metal resistance of cultivable bacteria in the Antarctic sea urchin. Antarct Sci 28(4):261–268. https://doi.org/10.1017/S0954102016000109

    Article  ADS  Google Scholar 

  51. Mangano S, Michaud L, Caruso C, Lo Giudice A (2014) Metal and antibiotic resistance in psychrotrophic bacteria associated with the Antarctic sponge Hemigellius pilosus (Kirkpatrick, 1907). Polar Biol 37:227–235. https://doi.org/10.1007/s00300-013-1426-1

    Article  Google Scholar 

  52. Richards GP, Watson MA, CraneEJ BIG, Bushek D (2008) Shewanella and Photobacterium spp. in oysters and seawater from the Delaware Bay. Appl Environ Microbiol 74(11):3323–3327. https://doi.org/10.1128/AEM.00060-08

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  53. Beleneva IA, Zhukova NV, Le Lan H, Ngueyen Tran DH (2007) Taxonomic composition of bacteria associated with cultivated mollusks Crassostrea lugubris and Perna viridis and with the water of the Gulf of Nha Trang lagoon, Vietnam. Microbiology 76:220–228. https://doi.org/10.1134/S0026261707020142

    Article  CAS  Google Scholar 

  54. Fiore CL, Jarett JK, Olson ND, Lesser MP (2010) Nitrogen fixation and nitrogen transformations in marine symbioses. Trends Microbiol 18(10):455–463. https://doi.org/10.1016/j.tim.2010.07.001

    Article  CAS  PubMed  Google Scholar 

  55. King GM, Judd C, Kuske CR, Smith C (2012) Analysis of stomach and gut microbiomes of the eastern oyster (Crassostrea virginica) from coastal Louisiana, USA. PloS One 7(12):e51475. https://doi.org/10.1371/journal.pone.0051475

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  56. Winters AD, Marsh TL, Faisal M (2011) Heterogeneity of bacterial communities within the zebra mussel (Dreissena polymorpha) in the Laurentian Great Lakes Basin. J Great Lakes Res 37:318–324. https://doi.org/10.1016/j.jglr.2011.01.010

    Article  Google Scholar 

  57. Beleneva IA, Zhukova NV, Maslennikova EF (2003) Comparative study of microbial communities from cultured and natural populations of the mussel Mytilus trossulus in Peter the Great Bay. Mikrobiologiia 72(4):528–534

    CAS  PubMed  Google Scholar 

  58. Chauhan A, Wafula D, Lewis DE, Pathak A (2014) Metagenomic assessment of the eastern oyster-associated microbiota. Genome Announc 2(5):e01083–e01014. https://doi.org/10.1128/genomeA.01083-14

    Article  PubMed  PubMed Central  Google Scholar 

  59. Yoon JH, Lee JK, Kim YO, Oh TK (2005) Photobacterium lipolyticum sp. nov., a bacterium with lipolytic activity isolated from the Yellow Sea in Korea. Int J Syst Evol Microbiol 55:335–339. https://doi.org/10.1099/ijs.0.63215-0

    Article  CAS  PubMed  Google Scholar 

  60. Urbanczyk H, Ast JC, Dunlap PV (2011) Phylogeny, genomics, and symbiosis of Photobacterium. FEMS Microbiol Rev 35(2):324–342. https://doi.org/10.1111/j.1574-6976.2010.00250.x

    Article  CAS  PubMed  Google Scholar 

  61. Kau AL, Ahern PP, Griffin NW, Goodman AL, Gordon JI (2011) Human nutrition, the gut microbiome and the immune system. Nature 474(7351):327–336. https://doi.org/10.1038/nature10213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Bozcal E, Dagdeviren M (2020) Bacterial metagenome analysis of Mytilus galloprovincialis collected from Istanbul and Izmir coastal stations of Turkey. Environ Monit Assess 192(3):186. https://doi.org/10.1007/s10661-020-8129-1

    Article  CAS  PubMed  Google Scholar 

  63. Boufafa M, Kadri S, Redder P, Bensouilah M (2021) Occurrence and distribution of fecal indicators and pathogenic bacteria in seawater and Perna perna mussel in the Gulf of Annaba (Southern Mediterranean). Environ Sci Pollut Res 28(33):46035–46052. https://doi.org/10.1007/s11356-021-13978-4

    Article  Google Scholar 

  64. Rabbia V, Bello-Toledo H, Jiménez S, Quezada M, Domínguez M, Vergara L, Gómez-Fuentes C, Calisto-Ulloa N, González-Acuña D, López J, González-Rocha G (2016) Antibiotic resistance in Escherichia coli strains isolated from Antarctic bird feces, water from inside a wastewater treatment plant, and seawater samples collected in the Antarctic Treaty area. Pol Sci 10(2):123–131

    ADS  Google Scholar 

  65. Venâncio I, Luís Â, Domingues F, Oleastro M, Pereira L, Ferreira S (2022) The prevalence of Arcobacteraceae in aquatic environments: a systematic review and meta-analysis. Pathogens 11(2):244. https://doi.org/10.3390/pathogens11020244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Emma M, Laffy Patrick W, Bourne David G, Webster NS (2021) Microbiome-mediated mechanisms contributing to the environmental tolerance of reef invertebrate species. Mar Biol 168:89. https://doi.org/10.1007/s00227-021-03893-0

    Article  Google Scholar 

Download references

Funding

This research was funded by the ANID-FONDECYT Grant Proyecto FONDECYT Iniciación No. 11190802 and the Marine Protected Areas Program (Number 24 03 052) of the Instituto Antártico Chileno. CAC was also funded by the ANID-Millennium Science Initiative Program (ICN2021_002). We would like to thank the Antarctic expedition department and Ignacio Garrido for diving support, as well as all logistic personnel at Profesor Julio Escudero Station.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: MGA, RR, and CAC; methodology: GP, RR, AF, CAC, and MGA; formal analysis and investigation: GP, RR, CAC, and MGA; writing and editing: GP, RR, CAC, and MGA; and funding acquisition: RR and MGA.

Corresponding authors

Correspondence to Marcelo González-Aravena or Rodolfo Rondon.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Carlos Rafael Mendes

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: In this article, several grammatical corrections should have been included.

Supplementary information

ESM 1

(PNG 8126 kb)

High resolution image (TIF 18359 kb)

ESM 2

(PDF 319 kb)

ESM 3

(PNG 136 kb)

ESM 4

(XLSX 215 kb)

ESM 5

(XLSX 10 kb)

ESM 6

(XLSX 10 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

González-Aravena, M., Perrois, G., Font, A. et al. Microbiome profile of the Antarctic clam Laternula elliptica. Braz J Microbiol 55, 487–497 (2024). https://doi.org/10.1007/s42770-023-01200-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-023-01200-1

Keywords

Navigation