Skip to main content

Advertisement

Log in

Copper-tolerant yeasts: Raman spectroscopy in determination of bioaccumulation mechanism

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Modern, efficient, and cost-effective approach to remediation of heavy metal-contaminated soil is based on the application of microorganisms. In this paper, four isolates from agricultural and urban contaminated soil showed abundant growth in the presence of copper(II) sulfate pentahydrate (CuSO4·5H2O) up to 2 mM. Selected yeasts were identified by molecular methods as Candida tropicalis (three isolates) and Schwanniomyces occidentalis (one isolate). C. tropicalis (4TD1101S) showed the highest percentage of bioaccumulation capabilities (94.37%), determined by the inductively coupled plasma optical emission spectrometry (ICP-OES). The Raman spectra of C. tropicalis (4TD1101S) analyzed in a medium with the addition of 2 mM CuSO4·5H2O showed certain increase in metallothionein production, which represents a specific response of the yeast species to the stress conditions. These results indicate that soil yeasts represent a potential for practical application in the bioremediation of contaminated environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • A Malvern Instruments’ Bioscience Development Initiative (2014) Use of DLS/Raman to study the thermal unfolding process of lysozyme http://www.kdsi.ru/upload/iblock/064/064ec6aa357fc3fc44c7daeae40817fd.pdf. Accessed 29 Jul 2014

  • Abe F, Miura T, Nagahama T, Inoue A, Usami R, Horikoshi K (2001) Isolation of a highly copper-tolerant yeast, Cryptococcus sp., from the Japan Trench and the induction of superoxide dismutase activity by Cu2+. Biotechnol Lett 23:2027–2034

    Article  CAS  Google Scholar 

  • Adrees M, Ali S, Rizwan M, Ibrahim M, Abbas F, Farid M, Zia-ur-Rehman M, Irshad MK, Bharwana SA (2015) The effect of excess copper on growth and physiology of important food crops: a review. Environ Sci Pollut Res 22:8148–8162

    Article  CAS  Google Scholar 

  • Ali Z, Malik RN, Qadir A (2013) Heavy metals distribution and risk assessment in soils affected by tannery effluents. Chem Ecol 29:676–692

    Article  CAS  Google Scholar 

  • Arbabi M, Golshani N (2016) Removal of copper ions Cu (II) from industrial wastewater: a review of removal methods. Int J Epidemiol 3:283–293

    Google Scholar 

  • Azo Materials (2014) Using Raman spectroscopy to understand the conformational stability of protein therapeutics. http://wwwazomcom/articleaspx?ArticleID=11142. Accessed 15 Jul 2014

  • Baker DE, Senft JP (1995) Copper. In: Alloway BJ (ed) Heavy metals in soils. Blackie Academic and Professional, Glasgow, pp 179–205

    Chapter  Google Scholar 

  • Bednarova L, Palacky J, Bauerova V, Heidingsfeldova OH, Pichova I, Mojzes P (2012) Raman microspectroscopy of the yeast vacuoles. Spectrosc Int J 27:503–507

    Article  CAS  Google Scholar 

  • Besnard E, Chenu C, Robert M (2001) Influence of organic amendments on copper distribution among particle-size and density fractions in Champagne vineyard soils. Environ Pollut 112:329–337

    Article  CAS  Google Scholar 

  • Botha A (2011) The importance and ecology of yeasts in soil. Soil Biol Biochem 43(1):1–8

  • Ceylan Ö, Ugur A (2012) Bio-monitoring of heavy metal resistance in non-aeruginosa Pseudomonas and Pseudomonas related species. J Biol Environ Sci 6:233–242

    Google Scholar 

  • Chojnacka H (2010) Biosorption and bioaccumulation—the prospects for practical applications. Environ Int 36:299–307

    Article  CAS  Google Scholar 

  • De Siloniz MI, Balsalobre L, Alba C, Valderrama MJ, Peinado JM (2002) Feasibility of copper uptake by the yeast Pichia guilliermondii isolated form sewage sludge. Res Microbiol 153:173–180

    Article  Google Scholar 

  • Donmez G, Aksu Z (2001) Bioaccumulation of copper (II) and nickel (II) by the non-adapted and adapted growing Candida sp. Water Res 35:1425–1434

    Article  CAS  Google Scholar 

  • EC 889/2008 (2008) Commission Regulation (EC) laying down detailed rules for the implementation of Council Regulation (EC) No 834/2007 on organic production and labelling of organic products with regard to organic production, labelling and control. Official Journal of the European Union, pp L250/1–L250/84

  • Gant VA, Wren MW, Rollins MS, Jeanes A, Hickok SS, Hall TJ (2007) Three novels highly charged copper-based biocides: safety and efficacy against healthcare-associated organisms. J Antimicrob Chemother 60:294–299

    Article  CAS  Google Scholar 

  • Hohmann S, Mager WH (1997) Yeast stress responses. Springer-Verlag, Heidelberg

    Google Scholar 

  • Hope G, Wood R (2004) Transient adsorption of sulfate ions during copper electrodeposition. J Electrochem Soc 15:550–553

    Article  Google Scholar 

  • Huang YS, Karashima T, Yamamoto M, Hamaguchi H (2005) Molecular-level investigation of the structure, transformation, and bioactivity of single living fission yeast cells by time- and space-resolved Raman spectroscopy. Biochemistry 44:10009–10019

    Article  CAS  Google Scholar 

  • Kabata-Pendias A, Pendias H (2001) Trace elements in soils and plants. CRC Press, Boca Raton

    Google Scholar 

  • Kizil R, Irudayaraj J, Seetharaman K (2002) Characterization of irradiated starches by using FT-Raman and FTIR spectroscopy. J Agric Food Chem 50:3912–3918

    Article  CAS  Google Scholar 

  • Lamb DT, Naidu R, Ming H, Megharaj M (2012) Copper phytotoxicity in native and agronomical plant species. Ecotoxicol Environ Saf 85:23–29

    Article  CAS  Google Scholar 

  • Marshall MN, Cocolin L, Mills DA, Vander Gheynst JS (2003) Evaluation of PCR primers for denaturing gradient gel electrophoresis analysis of fungal communities in compost. J Appl Microbiol 95:934–948

    Article  CAS  Google Scholar 

  • Mungroo NA, Oliveira G, Neethirajan S (2016) SERS based point-of-care detection of food-borne pathogens. Microchim Acta 183:697–707

    Article  CAS  Google Scholar 

  • Nevitt T, Ohrvik H, Thiele DJ (2012) Charting the travels of copper in eukaryotes from yeast to mammals. Biochim Biophys Acta 1823:1580–1593

    Article  CAS  Google Scholar 

  • Noothalapati H, Sasaki T, Kaino T, Kawamukai M, Ando M, Hamaguchi H, Yamamoto T (2016) Label-free chemical imaging of fungal spore walls by Raman microscopy and multivariate curve resolution analysis. Sci Rep 6:27789

    Article  CAS  Google Scholar 

  • Panikkanvalappil SR, Mahmoud MA, Mackey MA, El-Sayed MA (2013) Surface-enhanced Raman spectroscopy for real-time monitoring of reactive oxygen species-induced DNA damage and its prevention by platinum nanoparticles. ACS Nano 7:7524–7533

    Article  CAS  Google Scholar 

  • Petit AN, Fontaine F, Vatsa P, Clément C, Vaillant-Gaveau N (2012) Fungicide impacts on photosynthesis in crop plants. Photosynth Res 111:315–326

    Article  CAS  Google Scholar 

  • Prekrasna IP, Tashyrev OB (2015) Copper resistant strain Candida tropicalis RomCu5 interaction with soluble and insoluble copper compounds. Biotechnol Acta 8:93–102

    Article  Google Scholar 

  • Ristić M, Bokić T, Zečević T (2006) Copper accumulation and availability in vineyard soils of Serbia. FU “Work Liv Envr Prot” 3:35–42

    Google Scholar 

  • Rösch P, Stöckel S, Meisel S, Münchberg U, Kloß S, Kusic D, Schumacher W, Popp J (2011) A Raman spectroscopic approach for the cultivation-free identification of microbes, Asia Communications and Photonics Conference and Exhibition. Proceedings of SPIE (Optical Society of America), Shanghai, p 83111B

    Google Scholar 

  • RS 23/94 (1994) Pravilnik o dozvoljenim količinama opasnih i štetnih materija u zemljištu i vodi za navodnjavanje i metodama za njihovo ispitivanje. Sl. glasnik RS (in Serbian)

  • Samek O, Mlynariková K, Bernatová S, Ježek J, Krzyžánek V, Šiler M, Zemánek P, Růžička F, Holá V, Mahelová M (2014) Candida parapsilosis biofilm identification by Raman spectroscopy. Int J Mol Sci 15:23924–23935

    Article  Google Scholar 

  • Schach D, Großerüschkamp M, Nowak C, Knoll W, Naumann RLC (2011) Spectro-electrochemical investigation of the bc1 complex from the yeast Saccharomyces cerevisiae using surface enhanced b-band resonance Raman spectroscopy, biomimetic based applications. In: Cavrak M (ed) Biomimetic Based Applications. In Tech, pp 311–333

  • Schwartz JA, Olarte KT, Michalek JL, Jandu GS, Michel SLJ, Brunoa VM (2013) Regulation of copper toxicity by Candida albicans GPA2. Eukaryot Cell 12:954–961

    Article  CAS  Google Scholar 

  • Singh GP, Volpe G, Creely CM, Grӧtsch H, Geli IM, Petrov D (2006) The lag phase and G1 phase of a single yeast cell monitored by Raman microspectroscopy. J Raman Spectrosc 37:858–864

    Article  CAS  Google Scholar 

  • Slavikova E, Vadkertiova R (2003) The diversity of yeasts in the agricultural soil. J Basic Microbiol 43:430–436

    Article  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  Google Scholar 

  • Torreggiani A, Tinti A (2010) Raman spectroscopy a promising technique for investigations of metallothioneins. Metallomics 2:246–260

    Article  CAS  Google Scholar 

  • Udofia GE, Essien JP, Eduok SI, Akpan BP (2009) Bioaccumulation of heavy metals by yeasts from qua Iboe estuary mangrove sediment ecosystem. Nigeria Afr J Microbiol Res 3:862–869

    CAS  Google Scholar 

  • Villegas LB, Amorso MJ, De Figueroa LIC (2005) Copper tolerant yeasts isolated from polluted area of Argentina. J Basic Microbiol 45:381–391

    Article  CAS  Google Scholar 

  • Volesky B, Holanda ZR (1995) Biosorption of heavy metals. Biotechnol Prog 11:235–250

    Article  CAS  Google Scholar 

  • Wightwick AM, Croatto G, Reichman SM, Menzies NW, Pettigrove V, Allinson G (2013) Horticultural use of copper-based fungicides has not increased copper concentrations in sediments in the mid-and upper Yarra valley. Water Air Soil Pollut 224:1701

    Article  Google Scholar 

  • Winge DR, Sewell AK, Yu W, Thorvaldsen JL, Farrell R (1998) Metal ion stress in yeast. In: Silver S, Walden W (eds) Metal ions in gene regulation ITP. Springer, USA, pp 279–315

    Chapter  Google Scholar 

  • Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecol. doi:10.5402/2011/402647

  • Xie Y, Bertoni G, Riedinger A, Sathya A, Prato M, Marras S, Tu R, Pellegrino T, Manna L (2015) Nanoscale transformations in covellite (CuS) nanocrystals in the presence of divalent metal cations in a mild reducing environment. Chem Mater 27:7531–7537

    Article  CAS  Google Scholar 

  • Zabochnicka-Swiatek M, Krzywonos M (2014) Potentials of biosorption and bioaccumulation processes for heavy metal removal. Pol J Environ 23:551–561

    CAS  Google Scholar 

Download references

Acknowledgments

This paper was supported by the Ministry of Education, Science and Technological Development of Republic of Serbia (Grant numbers TR 31080 and OI 172057).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danka S. Radić.

Additional information

Responsible editor: Elena Maestri

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Radić, D.S., Pavlović, V.P., Lazović, M.M. et al. Copper-tolerant yeasts: Raman spectroscopy in determination of bioaccumulation mechanism. Environ Sci Pollut Res 24, 21885–21893 (2017). https://doi.org/10.1007/s11356-017-9817-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-9817-4

Keywords

Navigation