Skip to main content
Log in

Characterization of Radiation-Resistant Yeast Isolated from Radiation-Polluted Areas and Its Potential Application in Bioremediation

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

Twenty-four yeast isolates were obtained from radiation-polluted areas soils samples exposed to 60Co-γ radiation at a dose of 10 kGy and identified as members of the genus Cryptococcus based on morphological and LSU rDNA D1/D2 domain sequence analysis. Further phylogenetic analysis showed that the isolates were clustered into 4 branches. The investigation of these yeast isolates revealed D10 values for γ radiation of 5 (M2), 5 (M38), 6 (M22) and 7 kGy (M5) and a 4 × 10–3% survival rate at a UV dosage of 200 J/m2. Furthermore, the tolerance of M5 towards Zn2+ was as high as 1.700 mg/L. The isolate M5 was selected for further study, including the distribution of heavy metals within the cells by subcellular fractionation, expression of relevant genes involved in heavy metal resistance by qRT-PCR, and the removal rate by flame atomic absorption spectrometry (FAAS). The results revealed that almost 72.9% of the Zn2+ was absorbed by the cells and deposited mainly in the membrane fraction. Compared to normal conditions, all of the genes in M5 strain related to transport and regulation showed greater than 10.4-fold increases of expression levels upon exposure to heavy metal stress. In the presence of culture medium, a total of 86.5% of the initial concentration of Zn2+ was removed by the M5 strain exhibiting high removal efficiency and providing a potential of radiation-resistant platform strain for the bioremediation of heavy metals in polluted environments in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Anderson, A.W., Nordan, H.C., Cain, R.F., Parrish, G., and Duggan, D., Food Technol., 1956, vol. 10, pp. 575–578.

    Google Scholar 

  2. Brooks, B.W. and Murray, R.G.E., Int. J. Syst. Bacteriol., 1981, vol. 31, pp. 353–360.

    Article  Google Scholar 

  3. Rainey, F.A., Ray, K., Ferreira, M., Gatz, B.Z., and da Costa, M.S., Appl. Environ. Microbiol., 2005, vol. 71, pp. 5225–5235.

    Article  CAS  Google Scholar 

  4. Ito, H., Watanabe, H., Takehisa, M., and Iizuka, H., Agric. Biol. Chem., 1983, vol. 47, pp. 1239–1247.

    CAS  Google Scholar 

  5. Wang, Y.J., Ying, B.B., Shen, W., Zheng, R.C., and Zheng, Y.G., Enzyme Microb. Tech., 2017, vol. 107, pp. 32–40.

    Article  CAS  Google Scholar 

  6. Carreto, L., Moore, E., Nobre, M.F., Wait, R., Riley, P.W., and Sharp, R.J., Int. J. Syst. Evol. Micr., 1996, vol. 46, pp. 460–465.

    CAS  Google Scholar 

  7. Ekman, J.V., Raulio, M., Busse, H.J., Fewer, D.P., and Salkinoja-Salonen, M., Int. J. Syst. Evol. Micr., 2011, vol. 61, pp. 540–548.

    Article  CAS  Google Scholar 

  8. Yoo, S.H., Weon, H.Y., Kim, S.J., Kim, Y.S., Kim, B.Y., and Kwon, S.W., Int. J. Syst. Evol. Micr., 2010, vol. 60, pp. 1191–1195.

    Article  CAS  Google Scholar 

  9. Zhang, Z.D., Xie, Y.Q., Wang, W., Gu, M.Y., Zhu, J., and Shi, Y.H., Microbiology (Chinese), 2012, vol. 39, pp. 724–731.

    Google Scholar 

  10. Zhdanova, N.N., Zakharchenko, V.A., Vember, V.V., and Nakonechnaya, L.T., Mycol. Res., 2000, vol. 104, pp. 1421–1426.

    Article  Google Scholar 

  11. Zhdanova, N.N., Tugay, T., Dighton, J., Zheltonozhsky, V., and Mcdermott, P., Mycol. Res., 2004, vol. 108, pp. 1089–1096.

    Article  Google Scholar 

  12. Durrell, L.W. and Shields, L.M., Mycologia, 1960, vol. 52, pp. 636–641.

    Article  Google Scholar 

  13. Liu, T.T., Zhu, L.Y., Zhang, Z.P., Huang, H., Zhang, Z.D., and Jiang, L., Sci. Rep., 2017, vol. 7, pp. 17586.

    Article  Google Scholar 

  14. Leite, D.P., Amadio, J.V., Martins, E.R., Simões, S.A., and Hahn, R.C., Int. J. Occup. Environ. Med., 2012, vol. 7, pp. 11.

    Google Scholar 

  15. Kumar, M. and Upreti, R.K., Ecotox. Environ. Safety, 2000, vol. 47, pp. 246–252.

    Article  CAS  Google Scholar 

  16. Gao, X., Jiang, L., Zhu, L., Xu, Q., Xu, X., and Huang, H., J. Biotechnol., 2016, vol. 224, pp. 55–63.

    Article  CAS  Google Scholar 

  17. Vasudevan, S. and Oturan, M.A., Environ. Chem. Lett., 2014, vol. 12, pp. 97–108.

    Article  CAS  Google Scholar 

  18. Nazir, R., Khan, M., Masab, M., Rehman, H.U., and Shaheen, Z., J. Pharm. Sci. Res., 2015, vol. 7, pp. 89–97.

    CAS  Google Scholar 

  19. Pence, N.S., Larsen, P.B., Ebbs, S.D., Letham, D.L., and Kochian, L.V., Proc. Natl. Acad. Sci. U. S. A., 2000, vol. 97, pp. 4956–4960.

    Article  CAS  Google Scholar 

  20. Kiyono, M., Miyahara, K., Sone, Y., Pan-Hou, H., and Sakabe, K., Appl. Microbiol. Biot., 2010, vol. 86, pp. 753–759.

    Article  CAS  Google Scholar 

  21. Wang, W., Mao, J., Zhang, Z., Tang, Q., Xie, Y., and Goodfellow, M., Int. J. Syst. Evol. Micr., 2010, vol. 60, pp. 2006–2010.

    Article  CAS  Google Scholar 

  22. Sugita, T., Saito, M., Ito, T., Kato, Y., and Nishikawa, A., Microbiol. Immunol., 2003, vol. 47, pp. 945–950.

    Article  CAS  Google Scholar 

  23. Zhang, E., Tajima, M., Tsuboi, R., and Sugita, T., Microbiol. Immunol., 2013, vol. 57, pp. 74–76.

    Article  CAS  Google Scholar 

  24. Rao, S., Chan, Y., Lacap, D.C., Hyde, K.D., Pointing, S.B., and Farrell, R.L., Polar. Biol., 2012, vol. 35, pp. 567–574.

    Article  Google Scholar 

  25. Powel, M.S., Alizadeh, A.A., Budvytiene, I., Schaenman, J.M., and Banaei, N., J. Clin. Microbiol., 2012, vol. 50, pp. 1125–1127.

    Article  Google Scholar 

  26. Dadachova, E. and Casadevall, A., Curr. Opin. Microbiol., 2008, vol. 11, pp. 525–531.

    Article  CAS  Google Scholar 

  27. Moliné, M., Flores, M.R., Libkind, D., Photochem. Photobiol. Sci., 2010, vol. 9, pp. 1145–1151.

    Article  Google Scholar 

  28. Bennett, C.B., Lewis, L.K., Karthikeyan, G., Lobachev, K.S., Snipe, J.R., and Resnick, M.A., Nat. Genet., 2001, vol. 29, pp. 426–434.

    Article  CAS  Google Scholar 

  29. Holloman, W.K., Schirawski, J., and Holliday, R., Trends Microbiol., 2007, vol. 15, pp. 525–529.

    Article  CAS  Google Scholar 

  30. Guo, H., Luo, S., Chen, L., Xiao, X., Xi, Q., and He, Y., Biores. Technol., 2010, vol. 101, pp. 8599–8605.

    Article  CAS  Google Scholar 

  31. Bai, H.J., Zhang, Z.M., Yang, G.E., and Li, B.Z., Biores. Technol., 2008, vol. 99, pp. 7716–7722.

    Article  CAS  Google Scholar 

  32. Bischof, H., Burgstaller, S., Waldeck-Weiermair, M., Rauter, T., Schinagl, M., Ramadani-Muja, J., et al., Cells, 2019, vol. 8, pp. 492.

    Article  CAS  Google Scholar 

  33. Chen, M., Xu, P., Zeng, G., Yang, C., Huang, D., and Zhang, J., Biotechnol. Adv., 2015, vol. 33, pp. 745–755.

    Article  CAS  Google Scholar 

  34. Hall, J.L., J. Exp. Bot., 2002, vol. 53, pp. 1–11.

    Article  CAS  Google Scholar 

  35. Fan, T., Liu, Y., Fenz, B., Zeng, G., and Wang, X., J. Hazard. Mater., 2008, vol. 160, pp. 655–661.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors wish to thank Professor Y. Shi (Institute of Microbiology, Xinjiang Academy of Agricultural Sciences) for leading us to collect strains, and Professor F. Bai (Institute of Microbiology, Chinese Academy of Sciences) for the help of yeast identification.

Funding

This work was supported by the National Natural Science Foundation of China (31922070), the Natural Science Foundation of Jiangsu Province (BK20180038, BK20171461), the National High Technology Research and Development Program of China (2012AA021705), Tianshan Pine Plan (2017XS26), Basic Scientific R and D Program for Public Welfare Institutes in Xinjiang (KY2019023), and Basic Scientific R & D Program for Public Welfare Institutes in Xinjiang (KY2019019).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Z. Zhang or L. Jiang.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, T., Liu, X., Zhu, J. et al. Characterization of Radiation-Resistant Yeast Isolated from Radiation-Polluted Areas and Its Potential Application in Bioremediation. Appl Biochem Microbiol 56, 553–562 (2020). https://doi.org/10.1134/S0003683820050117

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683820050117

Keywords:

Navigation