Skip to main content

Advertisement

Log in

Biogenic synthesis of gold nanoparticles from Terminalia arjuna bark extract: assessment of safety aspects and neuroprotective potential via antioxidant, anticholinesterase, and antiamyloidogenic effects

  • Plant-borne compounds and nanoparticles: challenges for medicine, parasitology and entomology
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The development of neuroprotective drugs through eco-friendly production routes is a major challenge for current pharmacology. The present study was carried out to synthesize gold nanoparticles (AuNPs) through biogenic route using ethanolic bark extract of Terminalia arjuna, a plant of high interest in Asian traditional medicine, and to evaluate its neuroprotective effects. The synthesized AuNPs were characterized by UV-Vis spectroscopy, FTIR spectroscopy, XRD, FESEM, EDX, HRTEM, DLS, and zeta potential analyses. UV-Vis spectroscopy showed a characteristics SPR absorption band at 536 nm specific for AuNPs. XRD, TEM, and FESEM analyses revealed the formation of face-centered cubic crystalline, spherical and triangular shaped AuNPs, with size ranging between 20 and 50 nm. DLS and ZP analysis illustrated that the average size of AuNPs was 30 nm, which was found to be stable at 45 mv. The neuroprotective potential of AuNPs was evaluated by assessing its antioxidant, cholinesterase inhibitory, and antiamyloidogenic activities. AuNPs showed dose-dependant inhibition of acetylcholinesterase and butyrylcholinesterase with IC50 value of 4.25 ± 0.02 and 5.05 ± 0.02 μg/ml, respectively. In vitro antioxidant assays illustrated that AuNPs exhibited the highest reducing power and DPPH radical scavenging activity. In addition, AuNPs also efficiently suppressed the fibrillation of Aβ and destabilized the preformed mature fibrils. Results of toxicity studies in PBMC and adult zebra fish illustrated that AuNPs are non-toxic and biocompatible. Overall, our results highlighted the AuNPs promising potential in terms of antioxidant, anticholinesterase, antiamyloidogenic effects, and non-lethality allowing us to propose these nanomaterials as a suitable candidate for the development of drugs helpful in the treatment of neurodegenerative disorders like Alzheimer’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahmed S, Annu, Ikram S, Yudha SS (2016) Biosynthesis of gold nanoparticles: a green approach. J Photochem Photobiol B 161:141–153

    Article  CAS  Google Scholar 

  • Alharbi KK, Al-sheikh YA (2014) Role and implications of nanodiagnostics in the changing trends of clinical diagnosis. Saudi J Biol Sci 21:109–117

    Article  Google Scholar 

  • Alzheimer’s Association (2016) Alzheimer’s disease facts and figures. Alzheimers Dement 12(4):459–509

  • Amalraj A, Gopi S (2017) Medicinal properties of Terminalia arjuna (Roxb.) Wight & Arn.: a review. J Tradit Complement Med 7:65–78

    Article  Google Scholar 

  • Anand R, Gill KD, Mahdi AA (2014) Therapeutics of Alzheimer’s disease: past, present and future. Neuropharmacology 76:27–50

    Article  CAS  Google Scholar 

  • Antony JJ, Sivalingam P, Chen B (2015) Toxicological effects of silver nanoparticles. Environ Toxicol Pharmacol 40:729–732

    Article  CAS  Google Scholar 

  • Aromal SA, Vidhu VK, Philip D (2012) Green synthesis of well-dispersed gold nanoparticles using Macrotyloma uniflorum. Spectrochim Acta A Mol Biomol Spectrosc 85:99–104

    Article  CAS  Google Scholar 

  • Banerjee J, Narendhirakannan RT (2011) Biosynthesis of silver nanoparticles from Syzygium cumini (L.) seed extract and evaluation of their in vitro antioxidant activities. Dig J Nanomater Biostruct 6:961–968

    Google Scholar 

  • BarathManiKanth S, Kalishwaralal K, Sriram M et al (2010) Anti-oxidant effect of gold nanoparticles restrains hyperglycemic conditions in diabetic mice. J Nanobiotechnol 8:16

    Article  Google Scholar 

  • Barth A, Haris PI (2009) Biological and biomedical infrared spectroscopy. IOS Press, Amsterdam

    Google Scholar 

  • Benelli G, Lukehart CM (2017) Special issue: applications of green-synthesized nanoparticles in pharmacology, parasitology and entomology. J Clust Sci 28:1–2

    Article  CAS  Google Scholar 

  • Bernauer U, Oberemm A, Madle S, Gundert-Remy U (2005) The use of in vitro data in risk assessment. Basic Clin Pharmacol Toxicol 96:176–181

    Article  CAS  Google Scholar 

  • Cabaleiro-Lago C, Quinlan-Pluck F, Lynch I et al (2008) Inhibition of amyloid beta protein fibrillation by polymeric nanoparticles. J Am Chem Soc 130:15437–15443

    Article  CAS  Google Scholar 

  • Cabaleiro-Lago C, Quinlan-Pluck F, Lynch I et al (2010) Dual effect of amino modified polystyrene nanoparticles on amyloid β protein fibrillation. ACS Chem Neurosci 1:279–287

    Article  CAS  Google Scholar 

  • Chatha SAS, Hussain AI, Asad R et al (2014) Bioactive components and antioxidant properties of Terminalia arjuna L. extracts. J Food Process Technol 5:1–5

    Google Scholar 

  • Chauhan A, Zubair S, Tufail S, Sherwani A et al (2011) Fungus-mediated biological synthesis of gold nanoparticles: potential in detection of liver cancer. Int J Nanomedicine 6:2305–2319

    CAS  Google Scholar 

  • Dauthal P, Mukhopadhyay M (2013) In-vitro free radical scavenging activity of biosynthesized gold and silver nanoparticles using Prunus armeniaca (apricot) fruit extract. J Nanopart Res 15:1366

    Article  Google Scholar 

  • de la Escosura-Muñiz A, Plichta Z, Horák D, Merkoçi A (2015) Alzheimer’s disease biomarkers detection in human samples by efficient capturing through porous magnetic microspheres and labelling with electrocatalytic gold nanoparticles. Biosens Bioelectron 67:162–169

    Article  Google Scholar 

  • Elia P, Zach R, Hazan S et al (2014) Green synthesis of gold nanoparticles using plant extracts as reducing agents. Int J Nanomedicine 9:4007–4021

    Google Scholar 

  • García-Ayllón M-S, Small DH, Avila J, Sáez-Valero J (2011) Revisiting the role of acetylcholinesterase in Alzheimer’s disease: cross-talk with P-tau and β-amyloid. Front Mol Neurosci 4:22. doi:10.3389/fnmol.2011.00022

    Article  Google Scholar 

  • Gooding JJ, Alam MT, Barfidokht A, Carter L (2014) Nanoparticle mediated electron transfer across organic layers: from current understanding to applications. J Braz Chem Soc 25:418–426

    CAS  Google Scholar 

  • Gopinath K, Gowri S, Karthika V, Arumugam A (2014) Green synthesis of gold nanoparticles from fruit extract of Terminalia arjuna, for the enhanced seed germination activity of Gloriosa superba. J Nanostruct Chem 4:115

    Article  Google Scholar 

  • Haro-Vicente JF, Martínez-Graciá C, Ros G (2006) Optimisation of in vitro measurement of available iron from different fortificants in citric fruit juices. Food Chem 98:639–648

    Article  CAS  Google Scholar 

  • Huang J, Li Q, Sun D et al (2007) Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology 18:105104

    Article  Google Scholar 

  • Ingkaninan K, de Best CM, van der Heijden R et al (2000) High-performance liquid chromatography with on-line coupled UV, mass spectrometric and biochemical detection for identification of acetylcholinesterase inhibitors from natural products. J Chromatogr A 872:61–73

    Article  CAS  Google Scholar 

  • Jayaseelan C, Ramkumar R, Rahuman AA, Perumal P (2013) Green synthesis of gold nanoparticles using seed aqueous extract of Abelmoschus esculentus and its antifungal activity. Ind Crop Prod 45:423–429

    Article  CAS  Google Scholar 

  • Ji H, Zhang H (2008) Multipotent natural agents to combat Alzheimer’s disease. Functional spectrum and structural features. Acta Pharmacol Sin 29:143–151

    Article  CAS  Google Scholar 

  • Khurana R, Coleman C, Ionescu-Zanetti C et al (2005) Mechanism of thioflavin T binding to amyloid fibrils. J Struct Biol 151:229–238

    Article  CAS  Google Scholar 

  • Kleiveland CR (2015) Peripheral blood mononuclear cells. In: Verhoeckx K, Cotter P, López-Expósito I et al (eds) The impact of food bioactives on health. Springer Int Publishing, New York City, pp 161–167

    Google Scholar 

  • Kong J, Yu S (2007) Fourier transform infrared spectroscopic analysis of protein secondary structures. Acta Biochim Biophys Sin Shanghai 39:549–559

    Article  CAS  Google Scholar 

  • Kumar B, Smita K, Cumbal L (2015) Phytosynthesis of gold nanoparticles using Andean Ajı’ (Capsicum baccatum L.) Cogent Chem 1:1120982

    Article  Google Scholar 

  • Liao YH, Chang YJ, Yoshiike Y et al (2012) Negatively charged gold nanoparticles inhibit Alzheimer’s amyloid-β fibrillization, induce fibril dissociation, and mitigate neurotoxicity. Small 8:3631–3639

    Article  CAS  Google Scholar 

  • Liu G, Men P, Perry G, Smith MA (2010) Nanoparticle and iron chelators as a potential novel Alzheimer therapy. Methods Mol Biol 610:123–144

    Article  CAS  Google Scholar 

  • Liz-Marzán LM (2006) Tailoring surface plasmons through the morphology and assembly of metal nanoparticles. Langmuir 22:32–41

    Article  Google Scholar 

  • Loureiro JA, Gomes B, Fricker G et al (2016) Cellular uptake of PLGA nanoparticles targeted with anti-amyloid and anti-transferrin receptor antibodies for Alzheimer’s disease treatment. Colloids Surf B: Biointerfaces 145:8–13

    Article  CAS  Google Scholar 

  • Mahmoudi M, Kalhor HR, Laurent S et al (2013) Protein fibrillation and nanoparticle interactions: opportunities and challenges. Nano 5:2570–2588

    CAS  Google Scholar 

  • Martínez JC, Chequer NA, González JL et al (2012) Alternative methodology for gold nanoparticles diameter characterization using PCA technique and UV-VIS spectrophotometry. Nanosci Nanotechnol 2:184–189

    Article  Google Scholar 

  • Mittal AK, Kaler A, Mulay AV, Banerjee UC (2013) Synthesis of gold nanoparticles using whole cells of Geotrichum candidum. J Nanoparticles 2013:e150414. doi:10.1155/2013/150414

    Article  Google Scholar 

  • Mohan Kumar K, Mandal BK, Sinha M, Krishnakumar V (2012) Terminalia chebula mediated green and rapid synthesis of gold nanoparticles. Spectrochim Acta A Mol Biomol Spectrosc 86:490–494

    Article  CAS  Google Scholar 

  • Mosmann T (1983) Rapid colorimetric assay for cellular growthand survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  CAS  Google Scholar 

  • Muñoz-Ruiz P, Rubio L, García-Palomero E et al (2005) Design, synthesis, and biological evaluation of dual binding site acetylcholinesterase inhibitors: new disease-modifying agents for Alzheimer’s disease. J Med Chem 48:7223–7233

    Article  Google Scholar 

  • Narayanan KB, Sakthivel N (2010) Biological synthesis of metal nanoparticles by microbes. Adv Colloid Interf Sci 156:1–13

    Article  CAS  Google Scholar 

  • Nordberg A, Ballard C, Bullock R et al (2013) A review of butyrylcholinesterase as a therapeutic target in the treatment of Alzheimer’s disease. Prim Care Companion CNS Disord 15(2):PCC.12r01412

    Article  Google Scholar 

  • Oves M, Khan MS, Zaidi A, Ahmed AS, Ahmed F et al (2013) Antibacterial and cytotoxic efficacy of extracellular silver nanoparticles biofabricated from chromium reducing novel OS4 strain of Stenotrophomonas maltophilia. PLoS One 8(3):e59140. doi:10.1371/journal.pone.0059140

    Article  CAS  Google Scholar 

  • Oyaizu M (1986) Studies on products of browning reaction—antioxidative activities of products of browning reaction prepared from glucosamine. Jpn J Nutr Diet 44:307–315

    Article  CAS  Google Scholar 

  • Philip D, Unni C, Aromal SA, Vidhu VK (2011) Murraya Koenigii leaf-assisted rapid green synthesis of silver and gold nanoparticles. Spectrochim Acta A Mol Biomol Spectrosc 78:899–904

    Article  Google Scholar 

  • Ramesh BN, Indi SS, Rao KSJ (2010) Anti-amyloidogenic property of leaf aqueous extract of Caesalpinia crista. Neurosci Lett 475:110–114

    Article  CAS  Google Scholar 

  • Ramkumar VS, Pugazhendhi A, Gopalakrishnan K et al (2017) Biofabrication and characterization of silver nanoparticles using aqueous extract of seaweed Enteromorpha compressa and its biomedical properties. Biotechnol Rep 14:1–7

    Article  Google Scholar 

  • Saha A, Pawar VM, Jayaraman S (2012) Characterisation of polyphenols in Terminalia arjuna bark extract. Indian J Pharm Sci 74:339–347

    Article  CAS  Google Scholar 

  • Saratale GD, Saratale RG, Benelli G et al (2017) Anti-diabetic potential of silver nanoparticles synthesized with Argyreia nervosa leaf extract high synergistic antibacterial activity with standard antibiotics against foodborne bacteria. J Clust Sci 28:1709–1727

    Article  CAS  Google Scholar 

  • Sathishkumar M, Sneha K, Won SW et al (2009) Cinnamon zeylanicum bark extract and powder mediated green synthesis of nano-crystalline silver particles and its bactericidal activity. Colloids Surf B: Biointerfaces 73:332–338

    Article  CAS  Google Scholar 

  • Seo JM, Kim EB, Hyun MS et al (2015) Self-assembly of biogenic gold nanoparticles and their use to enhance drug delivery into cells. Colloids Surf B: Biointerfaces 135:27–34

    Article  CAS  Google Scholar 

  • Shankar PD, Shobana S, Karuppusamy I et al (2016) A review on the biosynthesis of metallic nanoparticles (gold and silver) using bio-components of microalgae: formation mechanism and applications. Enzym Microb Technol 95:28–44

    Article  CAS  Google Scholar 

  • Shanmuganathan R, MubarakAli D, Prabakar D et al (2017) An enhancement of antimicrobial efficacy of biogenic and ceftriaxone-conjugated silver nanoparticles: green approach. Environ Sci Pollut Res 1–9. doi:10.1007/s11356-017-9367-9

  • Sherwani MA, Tufail S, Khan AA, Owais M (2015) Gold nanoparticle-photosensitizer conjugate based photodynamic inactivation of biofilm producing cells: potential for treatment of C. albicans infection in BALB/c mice. PLoS ONE 10(7):e0131684. doi:10.1371/journal.pone.0131684

    Article  Google Scholar 

  • Shimada K, Fujikawa K, Yahara K, Nakamura T (1992) Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. J Agric Food Chem 40:945–948

    Article  CAS  Google Scholar 

  • Singh P, Singh H, Kim YJ et al (2016) Extracellular synthesis of silver and gold nanoparticles by Sporosarcina koreensis DC4 and their biological applications. Enzym Microb Technol 86:75–83

    Article  CAS  Google Scholar 

  • Sivalokanathan S, Ilayaraja M, Balasubramanian MP (2006) Antioxidant activity of Terminalia arjuna bark extract on N-nitrosodiethylamine induced hepatocellular carcinoma in rats. Mol Cell Biochem 281(1–2):87–93

    Article  CAS  Google Scholar 

  • Skirtach AG, Dejugnat C, Braun D et al (2005) The role of metal nanoparticles in remote release of encapsulated materials. Nano Lett 5:1371–1377

    Article  CAS  Google Scholar 

  • Smitha SL, Philip D, Gopchandran KG (2009) Green synthesis of gold nanoparticles using Cinnamomum zeylanicum leaf broth. Spectrochim Acta A Mol Biomol Spectrosc 74:735–739

    Article  CAS  Google Scholar 

  • Soni N, Singh DK, Singh VK (2017) Inhibition kinetics of acetylcholinesterase and phosphatases by the active constituents of Terminalia arjuna and Tamarindus indica in the cerebral ganglion of Lymnaea acuminate. Pharmacogn J 9(2):148–156

    Article  Google Scholar 

  • Sujitha MV, Kannan S (2013) Green synthesis of gold nanoparticles using Citrus fruits (Citrus limon, Citrus reticulata and Citrus sinensis) aqueous extract and its characterization. Spectrochim Acta A Mol Biomol Spectrosc 102:15–23

    Article  CAS  Google Scholar 

  • Suman TY, Radhika Rajasree SR, Ramkumar R et al (2014) The green synthesis of gold nanoparticles using an aqueous root extract of Morinda citrifolia L. Spectrochim Acta A Mol Biomol Spectrosc 118:11–16

    Article  CAS  Google Scholar 

  • Surveswaran S, Cai Y-Z, Corke H, Sun M (2007) Systematic evaluation of natural phenolic antioxidants from 133 Indian medicinal plants. Food Chem 102:938–953

    Article  CAS  Google Scholar 

  • Tavanti F, Pedone A, Menziani MC (2015) Competitive binding of proteins to gold nanoparticles disclosed by molecular dynamics simulations. J Phys Chem C 119:22172–22180

    Article  CAS  Google Scholar 

  • Vedagiri A, Thangarajan S (2016) Mitigating effect of chrysin loaded solid lipid nanoparticles against amyloid β25–35 induced oxidative stress in rat hippocampal region: an efficient formulation approach for Alzheimer’s disease. Neuropeptides 58:111–125

    Article  CAS  Google Scholar 

  • Vertegel AA, Siegel RW, Dordick JS (2004) Silica nanoparticle size influences the structure and enzymatic activity of adsorbed lysozyme. Langmuir 20:6800–6807

    Article  CAS  Google Scholar 

  • Vijayan SR, Santhiyagu P, Singamuthu M et al (2014) Synthesis and characterization of silver and gold nanoparticles using aqueous extract of seaweed, Turbinaria conoides, and their antimicrofouling activity. Sci World J 2014:e938272

    Article  Google Scholar 

  • Vijayan SR, Santhiyagu P, Ramasamy R et al (2016) Seaweeds: a resource for marine bionanotechnology. Enzym Microb Technol 95:45–57

    Article  CAS  Google Scholar 

  • Wang H, Gao XD, Zhou GC et al (2008) In vitro and in vivo antioxidant activity of aqueous extract from Choerospondias axillaris fruit. Food Chem 106:888–895

    Article  CAS  Google Scholar 

  • Wang Z, Zhao J, Li F et al (2009) Adsorption and inhibition of acetylcholinesterase by different nanoparticles. Chemosphere 77:67–73

    Article  CAS  Google Scholar 

  • Wang C, Zhang M, Mao X et al (2013) Nanomaterials for reducing amyloid cytotoxicity. Adv Mater 25:3780–3801

  • Xin Lee K, Shameli K, Miyake M et al (2016) Green synthesis of gold nanoparticles using aqueous extract of Garcinia mangostana fruit peels. J Nanomater 2016:e8489094

    Article  Google Scholar 

  • Zaman M, Ahmad E, Qadeer A et al (2014) Nanoparticles in relation to peptide and protein aggregation. Int J Nanomedicine 9:899–912

    Google Scholar 

  • Zhao Y, Zhao B (2013) Oxidative stress and the pathogenesis of Alzheimer’s disease. Oxidative Med Cell Longev 2013:e316523

    Google Scholar 

Download references

Acknowledgements

Dr. N.S and Dr. V.S.R thank University Grants Commission, New Delhi, India, for the financial support through Dr. D.S. Kothari Post Doctoral Fellowship Scheme [No. F.4-2/2006(BSR)/BL/13-14/0345 and F.4-2/2006(BSR)/BL/13-14/0312], Prof. GA acknowledges with thanks to University Grants Commission, New Delhi for the award of UGC-BSR Faculty Fellow. The authors are thankful to the authorities of Bharathidasan University, Tiruchirappalli, UGC-SAP-II and DST-PURSE for providing instrument facilities to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Natarajan Suganthy or Govindaraju Archunan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Thomas D. Bucheli

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suganthy, N., Sri Ramkumar, V., Pugazhendhi, A. et al. Biogenic synthesis of gold nanoparticles from Terminalia arjuna bark extract: assessment of safety aspects and neuroprotective potential via antioxidant, anticholinesterase, and antiamyloidogenic effects. Environ Sci Pollut Res 25, 10418–10433 (2018). https://doi.org/10.1007/s11356-017-9789-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-9789-4

Keywords

Navigation