Skip to main content
Log in

Plant-Based Synthesis of AuNPs Using Hippeastrum hybridum (L.): Their Ex vivo Anti-acetylcholinesterase Property

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

Nanotechnology is contributed to the techniques, which is well known for the production of unique morphology nanoparticles (NPs) through an environmentally satisfactory method. The present research is designed for the production of gold NPs (AuNPs) using Hippeastrum hybridum (HH) extract and then to test the potential of these AuNPs as ex vivo ant-acetyl cholinesterase (anti-AChE) inhibitor. These AuNPs were analyzed by UV-visible spectroscopy, SEM, FT-IR, EDX, and XRD. FT-IR confirmed the functional groups on the AuNPs surface, XRD report showed the crystal AuNPs of 10.72 nm size, SEM showed irregularly shaped morphology of AuNPs with 30 nm size, and EDX analysis confirmed 48.08% Au signal. A significant anti-AChE potential of 131±0.33 μg IC50 was exhibited by these AuNPs. According to Lineweaver-Burk AuNPs inhibit AChE in the non-competitive route (Km remained unchanged, while Vmax decrease from 1.358 to 0.28). Similarly, AuNPs showed no effect against KIapp, while causing an increase in Vmaxiapp value (11 to 23.35) The Km (Michaelis-Menten kinetic constants), KI (dissociation constant), and Ki (inhibitory constant) were reported to be 0.02 mM, 7.32 μg, and 32 μg. So, it is assumed that HH extract holds the potential for the generation of AuNPs that subsequently proved to be an anti-Alzheimer agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

Data will be available as per the requirement of Journal guidelines.

References

  1. Chaloupka, K., Malam, Y., & Seifalian, A. M. (2010). Nanosilver as a new generation of nanoproduct in biomedical applications. Trends in Biotechnology, 28, 580–588.

    Article  Google Scholar 

  2. Ganeshkumar, M., Sathishkumar, M., Ponrasu, T., Dinesh, M. G., & Suguna, L. (2013). Spontaneous ultra fast synthesis of gold nanoparticles using Punica granatum for cancer targeted drug delivery. Colloids and Surfaces B: Biointerfaces, 106, 208–216.

    Article  Google Scholar 

  3. Nair, R., Varghese, S. H., Nair, B. G., Maekawa, T., Yoshida, Y., & Kumar, D. S. (2010). Nanoparticulate material delivery to plants. Plant Science, 179, 154–163.

    Article  Google Scholar 

  4. Kumar, V., Guleria, P., Kumar, V., & Yadav, S. K. (2013). Gold nanoparticle exposure induces growth and yield enhancement in Arabidopsis thaliana. Science of the Total Environment, 461-462, 462–468.

    Article  Google Scholar 

  5. Niraimathi, K. L., Sudha, V., Lavanya, R., & Brindha, P. (2013). Biosynthesis of silver nanoparticles using Alternanthera sessilis (Linn.) extract and their antimicrobial, antioxidant activities. Colloids and Surfaces B: Biointerfaces, 102, 288–291.

    Article  Google Scholar 

  6. Bhat, R., Sharanabasava, V. G., Deshpande, R., Shetti, U., Sanjeev, G., & Venkataraman, A. (2013). Photo-bio-synthesis of irregular shaped functionalized gold nanoparticles using edible mushroom Pleurotus florida and its anticancer evaluation. Journal of Photochemistry and Photobiology: B, 125, 63–69.

    Article  Google Scholar 

  7. Annamalai, A., Christina, V. L., Sudha, D., Kalpana, M., & Lakshmi, P. T. (2013). Green synthesis, characterization and antimicrobial activity of Au NPs using Euphorbia hirta L. leaf extract. Colloids and Surfaces B: Biointerfaces, 108, 60–65.

    Article  Google Scholar 

  8. Gopinath, K., Gowri, S., Karthika, V., & Arumugam, A. (2014). Green synthesis of gold nanoparticles from fruit extract of Terminalia arjuna, for the enhanced seed germination activity of Gloriosa superba. Journal of Nanostructure in Chemistry, 4, 115.

    Article  Google Scholar 

  9. Inbakandan, D., Kumar, C., Abraham, L. S., Kirubagaran, R., Venkatesan, R., & Khan, S. A. (2013). Silver nanoparticles with anti microfouling effect: A study against marine biofilm forming bacteria. Colloids and Surfaces B: Biointerfaces, 111, 636–643.

    Article  Google Scholar 

  10. AshaRani, P. V., Low, K. M. G., PH, M., & Valiyaveettil, S. (2009). Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano, 3, 279–290.

    Article  Google Scholar 

  11. Bhattacharya, R., & Mukherjee, P. (2008). Biological properties of “naked” metal nanoparticles. Advanced Drug Delivery Reviews, 60, 1289–1306.

    Article  Google Scholar 

  12. Pollini, M., Paladini, F., Catalano, M., Taurino, A., Licciulli, A., Maffezzoli, A., & Sannino, A. (2011). Antibacterial coatings on haemodialysis catheters by photochemical deposition of silver nanoparticles. Journal of Materials Science: Materials in Medicine, 22, 2005–2012.

    Google Scholar 

  13. Rajeshkumar, S. (2016). Anticancer activity of eco-friendly gold nanoparticles against lung and liver cancer cells. Journal, Genetic Engineering & Biotechnology, 14, 195–202.

    Article  Google Scholar 

  14. Hulla, J. E., Sahu, S. C., & Hayes, A. W. (2015). Nanotechnology: History and future. Human & Experimental Toxicology, 34, 1318–1321.

    Article  Google Scholar 

  15. Ramamurthy, C. H., Padma, M., Samadanam, I. D., Mareeswaran, R., Suyavaran, A., Kumar, M. S., Premkumar, K., & Thirunavukkarasu, C. (2013). The extra cellular synthesis of gold and silver nanoparticles and their free radical scavenging and antibacterial properties. Colloids and Surfaces B: Biointerfaces, 102, 808–815.

    Article  Google Scholar 

  16. Sher, N., Alkhalifah, D. H. M., Ahmed, M., Mushtaq, N., Shah, F., Fozia, F., Khan, R. A., Hozzein, W. N., & Aboul-Soud, M. A. (2022). Comparative study of antimicrobial activity of silver, gold, and silver/gold bimetallic nanoparticles synthesized by green approach. Molecules, 27, 7895.

    Article  Google Scholar 

  17. Sher, N., Ahmed, M., Mushtaq, N., & Khan, R. A. (2022). Enhancing antioxidant, antidiabetic, and antialzheimer performance of Hippeastrum hybridum (L.) using silver nanoparticles. Applied Organometallic Chemistry, 36, e6724.

    Article  Google Scholar 

  18. Sher, N., Ahmed, M., Mushtaq, N., & Khan, R. A. (2020). Calligonum polygonoides reduced nanosilver: A new generation of nanoproduct for medical applications. European Journal of Integrative Medicine, 33, 101042.

    Article  Google Scholar 

  19. Philip, D., Unni, C., Aromal, S. A., & Vidhu, V. K. (2011). Murraya koenigii leaf-assisted rapid green synthesis of silver and gold nanoparticles, Spectrochim. Acta Part A, 78, 899–904.

    Article  Google Scholar 

  20. Amor, S., Puentes, F., Baker, D., & van der Valk, P. (2010). Inflammation in neurodegenerative diseases. Immunology, 129, 154–169.

    Article  Google Scholar 

  21. Chen, H., Kwong, J. C., Copes, R., Tu, K., Villeneuve, P. J., van Donkelaar, A., Hystad, P., Martin, R. V., Murray, B. J., Jessiman, B., Wilton, A. S., Kopp, A., & Burnett, R. T. (2017). Living near major roads and the incidence of dementia, Parkinson’s disease, and multiple sclerosis: A population-based cohort study. Lancet, 389, 718–726.

    Article  Google Scholar 

  22. Arsalan, A., Khurram, O., Maimoona, S., Kayser, M., Faiza, R., & Abdul, W. Y. (2013). Dementia in pakistan: national guidelines for clinicians. Pakistan Journal of Neurological Sciences (PJNS), 8, 7–27.

  23. Tan, C. C., Yu, J. T., Tan, M. S., Jiang, T., Zhu, X. C., & Tan, L. (2014). Autophagy in aging and neurodegenerative diseases: implications for pathogenesis and therapy. Neurobiology of Aging, 35, 941–957.

    Article  Google Scholar 

  24. Takalo, M., Salminen, A., Soininen, H., Hiltunen, M., & Haapasalo, A. (2013). Protein aggregation and degradation mechanisms in neurodegenerative diseases. American Journal of Neurodegenerative Disease, 2, 1–14.

    Google Scholar 

  25. Schliebs, R., & Arendt, T. (2011). The cholinergic system in aging and neuronal degeneration. Behavioural Brain Research, 221, 555–563.

    Article  Google Scholar 

  26. Chen, W. W., Zhang, X., & Huang, W. J. (2016). Role of neuroinflammation in neurodegenerative diseases (Review). Molecular Medicine Reports, 13, 3391–3396.

    Article  Google Scholar 

  27. Johri, A., & Beal, M. F. (2012). Mitochondrial dysfunction in neurodegenerative diseases. The Journal of Pharmacology and Experimental Therapeutics, 342, 619–630.

    Article  Google Scholar 

  28. Butterfield, D. A., Swomley, A. M., & Sultana, R. (2013). Amyloid -peptide (1-42)-induced oxidative stress in Alzheimer disease: Importance in disease pathogenesis and progression. Antioxidants & Redox Signaling, 19, 823–835.

    Article  Google Scholar 

  29. Ahmed, M., Khan, S. Z., Sher, N., Rehman, Z. U., Mushtaq, N., & Khan, R. A. (2021). Kinetic and toxicological effects of synthesized palladium(II) complex on snake venom (Bungarus sindanus) acetylcholinesterase. Journal of Venomous Animals and Toxins Including Tropical Diseases, 27, e20200047.

    Google Scholar 

  30. Solanki, I., Parihar, P., Mansuri, M. L., & Parihar, M. S. (2015). Flavonoid-based therapies in the early management of neurodegenerative diseases. Advances in Nutrition, 6, 64–72.

    Article  Google Scholar 

  31. Racchi, M., Mazzucchelli, M., Porrello, E., Lanni, C., & Govoni, S. (2004). Acetylcholinesterase inhibitors: novel activities of old molecules. Pharmacological Research, 50, 441–451.

    Article  Google Scholar 

  32. Öztürk, M. (2012). Anticholinesterase and antioxidant activities of Savoury (Satureja thymbra L.) with identified major terpenes of the essential oil. Food Chemistry, 134, 48–54.

    Article  Google Scholar 

  33. Mukherjee, P. K., Kumar, V., Mal, M., & Houghton, P. J. (2007). Acetylcholinesterase inhibitors from plants. Phytomedicine, 14, 289–300.

    Article  Google Scholar 

  34. Stevens, P. F. (2016). Asparagales: Amaryllidoideae. Angiosperm Phylogeny Website version. 3, 10531.

  35. Wang, Y., Chen, D., He, X., Shen, J., Xiong, M., Wang, X., Zhou, D., & Wei, Z. (2018). Revealing the complex genetic structure of cultivated amaryllis (Hippeastrum hybridum) using transcriptome-derived microsatellite markers. Scientific Reports, 8, 10645.

    Article  Google Scholar 

  36. Peterson, M. E., & Patricia, A. T. (2006). Small animal toxicology. Elsevier Health Sciences, 643–663.

  37. Prasad, K. S., & Savithramma, N. (2015). Biosynthesis and validation of silver nanoparticles from Nymphaea caerulea American Journal of Advanced. Drug Delivery, 3, 149–159.

    Google Scholar 

  38. Gopinath, K., Kumaraguru, S., Bhakyaraj, K., Mohan, S., Venkatesh, K. S., Esakkirajan, M., Kaleeswarran, P., Alharbi, N. S., Kadaikunnan, S., Govindarajan, M., Benelli, G., & Arumugam, A. (2016). Green synthesis of silver, gold and silver/gold bimetallic nanoparticles using the Gloriosa superba leaf extract and their antibacterial and antibiofilm activities. Microbial Pathogenesis, 101, 1–11.

    Article  Google Scholar 

  39. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. The Journal of Biological Chemistry, 193, 265–275.

    Article  Google Scholar 

  40. Ellman, G. L., Courtney, K. D., Andres, V., Jr., & Feather-Stone, R. M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, 7, 88–95.

    Article  Google Scholar 

  41. Pereira, M. E., Adams, A. I. H., & Silva, N. S. (2004). 2,5-Hexanedione inhibits rat brain acetylcholinesterase activity in vitro. Toxicology Letters, 146, 269–274.

    Article  Google Scholar 

  42. Lineweaver, H., & Burk, D. (1934). The determination of enzyme dissociation constants. Journal of the American Chemical Society, 56, 658–666.

    Article  Google Scholar 

  43. Hofstee, B. H. (1952). On the evaluation of the constants Vm and KM in enzyme reactions. Science, 116, 329–331.

    Article  Google Scholar 

  44. Dowd, J. E., & Riggs, D. S. (1965). A comparison of estimates of michaelis-menten kinetic constants from various linear transformations. The Journal of Biological Chemistry, 240, 863–869.

    Article  Google Scholar 

  45. Cornish-Bowden, A., & Cárdenas, M. L. (1991). Hexokinase and ‘glucokinase’ in liver metabolism. Trends in Biochemical Sciences, 16, 281–282.

    Article  Google Scholar 

  46. Dixon, M., & Webb, E. C. (1964). Enzymes. Longmans.

    Google Scholar 

  47. Sher, N., Ahmed, M., Mushtaq, N., & Khan, R. A. (2022). Synthesis of biogenic silver nanoparticles from the extract of Heliotropium eichwaldi L. and their effect as antioxidant, antidiabetic, and anti-cholinesterase. Applied Organometallic Chemistry, 37, e6950.

  48. Adebayo, E. A., Ibikunle, J. B., Oke, A. M., Lateef, A., Azeez, M. A., Oluwatoyin, A. O., AyanfeOluwa, A. V., Blessing, O. T., Comfort, O. O., & Adekunle, O. O. (2019). Antimicrobial and antioxidant activity of silver, gold and silver-gold alloy nanoparticles phytosynthesized using extract of Opuntia ficus-indica. Journal of Science: Advanced Materials and Devices, 58, 313–326.

    Google Scholar 

  49. Armendariz, V., Herrera, I., Peralta-videa, J. R., Jose-yacaman, M., Troiani, H., Santiago, P., & Gardea-Torresdey, J. L. (2004). Size controlled gold nanoparticle formation by Avena sativa biomass: use of plants in nanobiotechnology. Journal of Nanoparticle Research Journal of Recent Sciences, 6, 377–382.

    Google Scholar 

  50. Ajitha, B., Ashok Kumar Reddy, Y., & Sreedhara Reddy, P. (2015). Enhanced antimicrobial activity of silver nanoparticles with controlled particle size by pH variation. Powder Technology, 269, 110–117.

    Article  Google Scholar 

  51. Park, Y., Hong, Y. N., Weyers, A., Kim, Y. S., & Linhardt, R. J. (2011). Polysaccharides and phytochemicals: a natural reservoir for the green synthesis of gold and silver nanoparticles. IET Nanobiotechnology, 5, 69–78.

    Article  Google Scholar 

  52. Rai, A., Singh, A., Ahmad, A., & Sastry, M. (2006). Role of halide ions and temperature on the morphology of biologically synthesized gold nanotriangles. Langmuir, 22, 736–741.

    Article  Google Scholar 

  53. Pastoriza-Santos, I., & Liz-Marzan, L. M. (2002). Formation of PVP-protected metal nanoparticles in DMF. Langmuir, 18, 2888–2894.

    Article  Google Scholar 

  54. Palaniappan, P., Sathishkumar, G., & Sankar, R. (2015). Fabrication of nano-silver particles using Cymodocea serrulata and its cytotoxicity effect against human lung cancer A549 cells line. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 138, 885–890.

    Article  Google Scholar 

  55. Darroudi, M., Ahmad, M. B., Zamiri, R., Zak, A. K., Abdullah, A. H., & Ibrahim, N. A. (2011). Time-dependent effect in green synthesis of silver nanoparticles. International Journal of Nanomedicine, 6, 677–681.

    Article  Google Scholar 

  56. Balavandy, S. K., Shameli, K., Biak, D. R., & Abidin, Z. Z. (2014). Stirring time effect of silver nanoparticles prepared in glutathione mediated by green method. Chemistry Central Journal, 8, 11.

    Article  Google Scholar 

  57. Gao, Y., Huang, Q., Su, Q., & Li, R. (2014). Green synthesis of silver nanoparticles at room temperature using kiwifruit juice. An International Journal for Rapid Communication, 47, 790–795.

    Google Scholar 

  58. Baer, D. R. (2011). Surface characterization of nanoparticles: Critical needs and significant challenges. Journal of surface analysis, 17, 163–169.

    Article  Google Scholar 

  59. Bhatnagar, I., Mahato, K., Ealla, K. K. R., Asthana, A., & Chandra, P. (2018). Chitosan stabilized gold nanoparticle mediated self-assembled gliP nanobiosensor for diagnosis of Invasive Aspergillosis. International Journal of Biological Macromolecules, 110, 449–456.

    Article  Google Scholar 

  60. Dauthal, P., & Mukhopadhyay, M. (2016). Noble metal nanoparticles: Plant-mediated synthesis, mechanistic aspects of synthesis, and applications. Industrial & Engineering Chemistry Research, 55, 9557–9577.

    Article  Google Scholar 

  61. Syed, B., Karthik, N., Bhat, P., Bisht, N., Prasad, A., Satish, S., & Prasad, M. N. N. (2019). Phyto-biologic bimetallic nanoparticles bearing antibacterial activity against human pathogens. Journal of King Saud University - Science, 31, 798–803.

    Article  Google Scholar 

  62. Dada, A. O., Inyinbor, A. A., Idu, E. I., Bello, O. M., Oluyori, A. P., Adelani-Akande, T. A., Okunola, A. A., & Dada, O. (2018). Effect of operational parameters, characterization and antibacterial studies of green synthesis of silver nanoparticles using Tithonia diversifolia. PeerJ, 6, e5865.

    Article  Google Scholar 

  63. Femi-Adepoju, A. G., Dada, A. O., Otun, K. O., Adepoju, A. O., & Fatoba, O. P. (2019). Green synthesis of silver nanoparticles using terrestrial fern (Gleichenia Pectinata (Willd.) C. Presl.): characterization and antimicrobial studies. Heliyon, 5, e01543.

    Article  Google Scholar 

  64. Khan, F. A., Zahoor, M., Jalal, A., & Rahman, A. U. (2016). Green synthesis of silver nanoparticles by using Ziziphus nummularia leaves aqueous extract and their biological activities. Journal of Nanomaterials, 1, 1–8.

  65. Sharififar, F., Moshafi, M. H., Shafazand, E., & Koohpayeh, A. (2012). Acetyl cholinesterase inhibitory, antioxidant and cytotoxic activity of three dietary medicinal plants. Food Chemistry, 130, 20–23.

    Article  Google Scholar 

  66. Orhan, I. E., Senol, F. S., Ercetin, T., Kahraman, A., Celep, F., Akaydin, G., Sener, B., & Dogan, M. (2013). Assessment of anticholinesterase and antioxidant properties of selected sage (Salvia) species with their total phenol and flavonoid contents. Industrial Crops and Products, 41, 21–30.

    Article  Google Scholar 

  67. Sher, N., Ahmed, M., Mushtaq, N., & Khan, R. A. (2022). Enhancing antioxidant, antidiabetic, and antialzheimer performance of Hippeastrum hybridum (L.) using silver nanoparticles. Applied Organometallic Chemistry, 36, 6724.

    Article  Google Scholar 

  68. Dorosti, N., & Jamshidi, F. (2016). Plant-mediated gold nanoparticles by Dracocephalum kotschyi as anticholinesterase agent: Synthesis, characterization, and evaluation of anticancer and antibacterial activity. Journal of Applied Biomedicine, 14, 235–245.

    Article  Google Scholar 

  69. Songül, K., Mehmet, K., & Ceyda, S. K. (2019). Antioxidant and anticholinesterase activities of Heliotropium dolosum, H. lasiocarpum and H. hirsutissimum growing in Turkey. Journal of Science and Technology, 12, 1381–1391.

    Google Scholar 

Download references

Funding

The present study was supported by the higher education commission of Pakistan via project no. 20-2171/NRPU/R&D/HEC/13/5610.

Author information

Authors and Affiliations

Authors

Contributions

NS, MA, and NM performed experiments, analyzed data, and wrote the paper. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mushtaq Ahmed.

Ethics declarations

Ethics Approval and Consent To Participate

The study was approved by the Departmental Ethical Approval Committee Ref No: Biotech/Ethic/110.

Consent for Publication

Not applicable

Competing Interests

The authors declare no competing interests.

Conflict of Interest

None.

Research Involving Humans and Animals Statement

None.

Informed Consent

None.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sher, N., Ahmed, M. & Mushtaq, N. Plant-Based Synthesis of AuNPs Using Hippeastrum hybridum (L.): Their Ex vivo Anti-acetylcholinesterase Property. BioNanoSci. 13, 1766–1778 (2023). https://doi.org/10.1007/s12668-023-01227-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-023-01227-6

Keywords

Navigation