Skip to main content
Log in

Green synthesis of gold nanoparticles using Acorus calamus leaf extract and study on their anti-alzheimer potential

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Nowadays, the fabrication and characterization of plant extract-based gold nanoparticles (AuNPs) as well as their anticancer activities have gained significant attention. Acorus calamus is a typical Chinese medicinal herb that has been utilized since a period of thousand years for treating rheumatism, asthma, tracheitis, etc. In the current study, the reaction parameters are optimized for managing the size of NPs as categorized by the high-resolution transmission electron microscopy. Various characterization methods such as X-ray diffraction, UV-visible spectroscopy and Fourier-transform infrared spectroscopy were carried out to confirm the fabrication of AuNPs mediated by the leaf extract of A. calamus. Further, the neuroprotective potential of fabricated AuNPs was studied by evaluating the cholinesterase inhibitory activity and antioxidant potential. The nanogold aqueous extracts exhibited the highest antioxidant and anti-acetyl cholinesterase activity, confirming that AuNPs can cross the blood-brain barrier and raise the level of acetyl cholinesterase, at the same time reduces the oxidative stress levels. The obtained results concluded their important potential for development of anti-Alzheimer drug having antioxidant and anticholinesterase activity against oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data will be available upon reasonable request from the corresponding author.

References

  1. Gour A, Jain NK (2019) Advances in green synthesis of nanoparticles. Artif Cells Nanomed Biotechnol 47:844–851. https://doi.org/10.1080/21691401.2019.1577878

    Article  CAS  PubMed  Google Scholar 

  2. Gardea-Torresdey JL, Gomez E, Peralta-Videa JR et al (2003) Alfalfa sprouts: a natural source for the synthesis of silver nanoparticles. Langmuir 19:1357–1361. https://doi.org/10.1021/la020835i

    Article  CAS  Google Scholar 

  3. Huang J, Li Q, Sun D et al (2007) Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology 18:105104. https://doi.org/10.1088/0957-4484/18/10/105104

    Article  CAS  ADS  Google Scholar 

  4. Leela A, Vivekanandan M (2008) Tapping the unexploited plant resources for the synthesis of silver nanoparticles. Afr J Biotechnol 7:3162–3165. https://doi.org/10.5897/AJB08.425

    Article  Google Scholar 

  5. Li S, Shen Y, Xie A et al (2007) Green synthesis of silver nanoparticles using Capsicum annuum L. extract. Green Chem 9:852–858. https://doi.org/10.1039/B615357G

    Article  CAS  Google Scholar 

  6. Shankar SS, Rai A, Ahmad A et al (2004) Rapid synthesis of au, Ag, and bimetallic au core-Ag shell nanoparticles using neem (Azadirachta indica) leaf broth. J Colloid Interface Sci 275:496–502. https://doi.org/10.1016/j.jcis.2004.03.003

    Article  CAS  PubMed  ADS  Google Scholar 

  7. Song JY, Kim BS (2009) Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioprocess Biosyst Eng 32:79–84. https://doi.org/10.1007/s00449-008-0224-6

    Article  CAS  PubMed  Google Scholar 

  8. Mani A, Lakshmi S, Gopal V (2012) Bio-mimetic synthesis of silver nanoparticles and evaluation of its free radical scavenging activity. Int J Biol Pharm Res 3:631–633

    Google Scholar 

  9. Aparna Mani KM, Seethalakshmi S, Gopal V (2015) Evaluation of in-vitro anti-inflammatory activity of silver nanoparticles synthesised using Piper nigrum extract. J Nanomed Nanotechnol 6:268. https://doi.org/10.4172/2157-7439.1000268

    Article  CAS  Google Scholar 

  10. Shawkey AM, Rabeh MA, Abdulall A et al (2013) Green nanotechnology: anticancer activity of silver nanoparticles using Citrullus colocynthis aqueous extracts. Int J Adv Life Sci Technol 13:60–70

    Google Scholar 

  11. Chandra Mohan S, Sasikala K, Anand T et al (2014) Green synthesis, antimicrobial and antioxidant effects of silver nanoparticles using Canthium coromandelicum leaves extract. Res J Microbiol 9:142–150. https://doi.org/10.3923/jm.2014.142.150

    Article  Google Scholar 

  12. Rajenran R, Ganesan N, Balu SK et al (2015) Green synthesis, characterization, antimicrobial and cytotoxic effects of silver nanoparticles using Origanum heracleoticum L. leaf extract. Int J Pharm Pharm Sci 7:288–293

    Google Scholar 

  13. Nazem A, Mansoori GA (2011) Nanotechnology for Alzheimer’s disease detection and treatment. Insciences J 1:169–193. https://doi.org/10.5640/insc.0104169

    Article  CAS  Google Scholar 

  14. Nazıroğlu M, Muhamad S, Pecze L (2017) Nanoparticles as potential clinical therapeutic agents in Alzheimer’s disease: focus on selenium nanoparticles. Expert Rev Clin Pharmacol 10:773–782. https://doi.org/10.1080/17512433.2017.1324781

    Article  CAS  PubMed  Google Scholar 

  15. Saraiva C, Praça C, Ferreira R et al (2016) Nanoparticle-mediated brain drug delivery: overcoming blood–brain barrier to treat neurodegenerative diseases. J Control Release 235:34–47. https://doi.org/10.1016/j.jconrel.2016.05.044

    Article  CAS  PubMed  Google Scholar 

  16. Hajipour MJ, Santoso MR, Rezaee F et al (2017) Advances in Alzheimer’s diagnosis and therapy: the implications of nanotechnology. Trends Biotechnol 35:937–953. https://doi.org/10.1016/j.tibtech.2017.06.002

    Article  CAS  PubMed  Google Scholar 

  17. Zheng X, Zhang C, Guo Q et al (2017) Dual-functional nanoparticles for precise drug delivery to Alzheimer’s disease lesions: targeting mechanisms, pharmacodynamics and safety. Int J Pharm 525:237–248. https://doi.org/10.1016/j.ijpharm.2017.04.033

    Article  CAS  PubMed  Google Scholar 

  18. Carradori D, Balducci C, Re F et al (2018) Antibody-functionalized polymer nanoparticle leading to memory recovery in Alzheimer’s disease-like transgenic mouse model. Nanomedicine 14:609–618. https://doi.org/10.1016/j.nano.2017.12.006

    Article  CAS  PubMed  Google Scholar 

  19. Loureiro JA, Gomes B, Fricker G et al (2016) Cellular uptake of PLGA nanoparticles targeted with anti-amyloid and anti-transferrin receptor antibodies for Alzheimer’s disease treatment. Colloids Surf B Biointerfaces 145:8–13. https://doi.org/10.1016/j.colsurfb.2016.04.041

    Article  CAS  PubMed  Google Scholar 

  20. Yulizar Y, Utari T, Ariyanta HA et al (2017) Green method for synthesis of gold nanoparticles using Polyscias scutellaria leaf extract under UV light and their catalytic activity to reduce methylene blue. J Nanomater 2017:3079636. https://doi.org/10.1155/2017/3079636

    Article  CAS  Google Scholar 

  21. Makarov VV, Love AJ, Sinitsyna OV et al (2014) Green nanotechnologies: synthesis of metal nanoparticles using plants. Acta Naturae 6:35–44. https://doi.org/10.32607/20758251-2014-6-1-35-44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sadeghi B, Mohammadzadeh M, Babakhani B (2015) Green synthesis of gold nanoparticles using Stevia rebaudiana leaf extracts: characterization and their stability. J Photochem Photobiol B 148:101–106. https://doi.org/10.1016/j.jphotobiol.2015.03.025

    Article  CAS  PubMed  Google Scholar 

  23. Maddinedi SB, Mandal BK, Anna KK (2017) Environment friendly approach for size controllable synthesis of biocompatible silver nanoparticles using diastase. Environ Toxicol Pharmacol 49:131–136. https://doi.org/10.1016/j.etap.2016.11.019

    Article  CAS  PubMed  Google Scholar 

  24. Maddinedi SB, Mandal BK, Anna KK (2017) Tyrosine assisted size controlled synthesis of silver nanoparticles and their catalytic, in-vitro cytotoxicity evaluation. Environ Toxicol Pharmacol 51:23–29. https://doi.org/10.1016/j.etap.2017.02.020

    Article  CAS  PubMed  Google Scholar 

  25. Maddinedi SB, Mandal BK, Maddili SK (2017) Biofabrication of size controllable silver nanoparticles—A green approach. J Photochem Photobiol B 167:236–241. https://doi.org/10.1016/j.jphotobiol.2017.01.003

    Article  CAS  PubMed  Google Scholar 

  26. Mohan Kumar K, Mandal BK, Kiran Kumar HA et al (2013) Green synthesis of size controllable gold nanoparticles. Spectrochim Acta Mol Biomol Spectrosc 116:539–545. https://doi.org/10.1016/j.saa.2013.07.077

    Article  CAS  ADS  Google Scholar 

  27. Ragab D, Abdallah DM, El-Abhar HS (2014) Cilostazol renoprotective effect: modulation of PPAR-γ, NGAL, KIM-1 and IL-18 underlies its novel effect in a model of ischemia-reperfusion. PLoS ONE 9:e95313. https://doi.org/10.1371/journal.pone.0095313

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  28. Satoh K (1978) Serum lipid peroxide in cerebrovascular disorders determined by a new colorimetric method. Clin Chim Acta 90:37–43. https://doi.org/10.1016/0009-8981(78)90081-5

    Article  CAS  PubMed  Google Scholar 

  29. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358. https://doi.org/10.1016/0003-2697(79)90738-3

    Article  CAS  PubMed  Google Scholar 

  30. Galle P, Berry GP, Duckett S (1980) Electron microprobe ultrastructural localization of aluminum in rat brain. Acta Neuropathol 49:245–247. https://doi.org/10.1007/BF00707114

    Article  CAS  PubMed  Google Scholar 

  31. Beutler E, Duron O, Kelly BM (1963) Improved method for the determination of blood glutathione. J Lab Clin Med 61:882–888

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

HP: Experimental works for materials preparation, manuscript writing. SZ: Manuscript writing, interpretation of data, data analysis. QC: Biological experiments, statistical analysis. ZH: Manuscript writing, interpretation of data.

Corresponding author

Correspondence to Shuzhen Zhang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

All the animal experiments were performed with the approval from Research Centre ethics committee of The First Affiliated Hospital of Shaoyang University and experiments were performed according to their guidelines.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, H., Zhang, S., Chai, Q. et al. Green synthesis of gold nanoparticles using Acorus calamus leaf extract and study on their anti-alzheimer potential. Biotechnol Bioproc E 29, 157–163 (2024). https://doi.org/10.1007/s12257-024-00010-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-024-00010-y

Keywords

Navigation