Skip to main content
Log in

Fe3O4 nanoparticle-encapsulated mesoporous carbon composite: An efficient heterogeneous Fenton catalyst for phenol degradation

  • Water: From Pollution to Purification
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Magnetite (Fe3O4) nanoparticle-encapsulated mesoporous carbon nanocomposite was fabricated from Fe-based metal–organic framework (MOF) (MIL-102) through carbonization. It was found that Fe-based MOF (MIL-102) is a potential precursor for the fabrication of hexagonal mesoporous carbon nanodisk functionalized with Fe3O4 nanoparticles. The obtained nanocomposite was characterized by XRD, FT-IR, N2 adsorption and desorption, FE-SEM and HRTEM techniques. As a Fenton-like solid catalyst for phenol degradation, Fe3O4 nanoparticle-encapsulated mesoporous carbon showed greater catalytic activity for the production of hydroxyl radical from the decomposition of H2O2 and it accomplished 100% phenol and 82% total organic carbon (TOC) conversion, within 120 min of reaction. This enhanced catalytic performance was due to confined access for the pollutant to the iron oxide nanoparticles provided by mesopores in carbon shell. Bare Fe3O4 nanodisk shows poor catalytic performance in the degradation of phenol, and it obviously reveals the significance of the mesoporous carbon support for iron oxide nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Angamuthu M, Satishkumar G, Landau MV (2017) Precisely controlled encapsulation of Fe3O4 nanoparticles in mesoporous carbon nanodisk using iron based MOF precursor for effective dye removal. Micropor Mesopor Mater 251:58–68. doi:10.1016/j.micromeso.2017.05.045

    Article  CAS  Google Scholar 

  • Banerjee A, Gokhale R, Bhatnagar S, Jog J, Bhardwaj M, Lefez B, Hannoyer B, Ogale S (2012) MOF derived porous carbon–Fe3O4 nanocomposite as a high performance, recyclable environmental superadsorbent. J Mater Chem 22:19694–19699. doi:10.1039/c2jm33798c

    Article  CAS  Google Scholar 

  • Busca G, Berardinelli S, Resini C, Arrighi L (2008) Technologies for the removal of phenol from fluid streams: a short review of recent developments. J Hazard Mater 160:265–288. doi:10.1016/j.jhazmat.2008.03.045

    Article  CAS  Google Scholar 

  • Chen Z, Liang Y, Hao J, Cui ZM (2016) Noncontact synergistic effect between Au nanoparticles and the Fe2O3 spindle inside a mesoporous silica shell as studied by the Fenton-like reaction. Langmuir 32:12774–12780. doi:10.1021/acs.langmuir.6b03235

    Article  CAS  Google Scholar 

  • Cihanoğlu A, Gündüz G, Dükkancı M (2015) Degradation of acetic acid by heterogeneous Fenton-like oxidation over iron-containing ZSM-5 zeolites. Appl Catal B Environ 165:687–699. doi:10.1016/j.apcatb.2014.10.073

    Article  CAS  Google Scholar 

  • Datta KJ, Gawande MB, Datta KKR, Ranc V, Pechousek J, Krizek M, Tucek J, Kale R, Pospisil P, Varma RS, Asefa T, Zoppellaro G, Zboril R (2016) Micro–mesoporous iron oxides with record efficiency for the decomposition of hydrogen peroxide: morphology driven catalysis for the degradation of organic contaminants. J Mater Chem A 4:596–604. doi:10.1039/c5ta08386a

    Article  CAS  Google Scholar 

  • Duarte F, Morais V, Maldonado-Hódar FJ, Madeira LM (2013) Treatment of textile effluents by the heterogeneous Fenton process in a continuous packed-bed reactor using Fe/activated carbon as catalyst. Chem Eng J 232:34–41. doi:10.1016/j.cej.2013.07.061

    Article  CAS  Google Scholar 

  • Fajerwerg K, Debellefontaine H (1996) Wet oxidation of phenol by hydrogen peroxide using heterogeneous catalysis Fe-ZSM-5: a promising catalyst. Appl Catal B Environ 10:L229–L235. doi:10.1016/S0926-3373(96)00041-0

    Article  CAS  Google Scholar 

  • Hao L, Wang C, Wu Q, Li Z, Zang X, Wang Z (2014) Metal-organic framework derived magnetic nanoporous carbon: novel adsorbent for magnetic solid-phase extraction. Anal Chem 86:12199–12205. doi:10.1021/ac5031896

    Article  CAS  Google Scholar 

  • Hartmann M, Kullmann S, Keller H (2010) Wastewater treatment with heterogeneous Fenton-type catalysts based on porous materials. J Mater Chem 20:9002–9017. doi:10.1039/c0jm00577k

    Article  CAS  Google Scholar 

  • Herney-Ramirez J, Lampinen M, Vicente MA, Costa CA, Madeira LM (2008) Experimental design to optimize the oxidation of Orange II dye solution using a clay-based Fenton-like catalyst. Ind Eng Chem Res 47:284–294. doi:10.1021/ie070990y

    Article  CAS  Google Scholar 

  • Hou L, Zhang Q, Jérôme F, Duprez D, Zhang H, Royer S (2014) Shape-controlled nanostructured magnetite-type materials as highly efficient Fenton catalysts. Appl Catal B Environ 144:739–749. doi:10.1016/j.apcatb.2013.07.072

    Article  CAS  Google Scholar 

  • Kavitha V, Palanivelu K (2016) Degradation of phenol and trichlorophenol by heterogeneous photo-Fenton process using Granular Ferric Hydroxide®: comparison with homogeneous system. Int J Environ Sci Technol 13:927–936. doi:10.1007/s13762-015-0922-y

    Article  CAS  Google Scholar 

  • Lee HJ, Cho W, Lim E, Oh M (2014) One-pot synthesis of magnetic particle-embedded porous carbon composites from metal-organic frameworks and their sorption properties. Chem Commun 50:5476–5479. doi:10.1039/c4cc01914h

    Article  CAS  Google Scholar 

  • Lei Z, Xiao Y, Dang L, You W, Hu G, Zhang J (2007) Nickel-catalyzed fabrication of SiO2, TiO2/graphitized carbon, and the resultant graphitized carbon with periodically macroporous structure. Chem Mater 19:477–484. doi:10.1021/cm061806m

    Article  CAS  Google Scholar 

  • Li X, Gai F, Guan B, Zhang Y, Liu Y, Huo Q (2015a) Fe@C core–shell and Fe@C yolk–shell particles for effective removal of 4-chlorophenol. J Mater Chem A 3:3988–3994. doi:10.1039/c4ta05915h

    Article  CAS  Google Scholar 

  • Li X, Liu X, Xu L, Wen Y, Ma J, Wu Z (2015b) Highly dispersed Pd/PdO/Fe2O3 nanoparticles in SBA-15 for Fenton-like processes: confinement and synergistic effects. Appl Catal B Environ 165:79–86. doi:10.1016/j.apcatb.2014.09.071

    Article  CAS  Google Scholar 

  • Li H, Zhu J, Xiao P, Zhan Y, Lv K, Wu L, Li M (2016) On the mechanism of oxidative degradation of rhodamine B over LaFeO3 catalysts supported on silica materials: role of support. Micropor Mesopor Mater 221:159–166. doi:10.1016/j.micromeso.2015.09.034

    Article  CAS  Google Scholar 

  • Liao Q, Sun J, Gao L (2009) Degradation of phenol by heterogeneous Fenton reaction using multi-walled carbon nanotube supported Fe2O3 catalysts. Colloids Surf A Physicochem Eng Asp 345:95–100. doi:10.1016/j.colsurfa.2009.04.037

    Article  CAS  Google Scholar 

  • Lin S-S, Gurol MD (1998) Catalytic decomposition of hydrogen peroxide on iron oxide: kinetics, mechanism, and implications. Environ Sci Technol 32:1417–1423. doi:10.1021/es970648k

    Article  CAS  Google Scholar 

  • Liu Y, Xu X, Wang M, Lu T, Sun Z, Pan L (2015) Metal-organic framework-derived porous carbon polyhedra for highly efficient capacitive deionization. Chem Commun 51:12020–12023. doi:10.1039/c5cc03999a

    Article  CAS  Google Scholar 

  • Luo L, Zhang A, Janik MJ, Song C, Guo X (2016) Mesoporous graphitic carbon nitride functionalized iron oxides for promoting phenol oxidation activity. RSC Adv 6:91960–91967. doi:10.1039/c6ra19455a

    Article  CAS  Google Scholar 

  • Lyu L, Zhang L, Wang Q, Nie Y, Hu C (2015) Enhanced Fenton catalytic efficiency of gamma-Cu-Al2O3 by sigma-Cu2+-ligand complexes from aromatic pollutant degradation. Environ Sci Technol 49:8639–8647. doi:10.1021/acs.est.5b00445

    Article  CAS  Google Scholar 

  • Maldonado-Hódar FJ, Moreno-Castilla C, Rivera-Utrilla J, Hanzawa Y, Yamada Y (2000) Catalytic graphitization of carbon aerogels by transition metals. Langmuir 16:4367–4373. doi:10.1021/la991080r

    Article  CAS  Google Scholar 

  • Martínez F, Calleja G, Melero JA, Molina R (2007) Iron species incorporated over different silica supports for the heterogeneous photo-Fenton oxidation of phenol. Appl Catal B Environ 70:452–460. doi:10.1016/j.apcatb.2005.10.034

    Article  CAS  Google Scholar 

  • Martínez F, Molina R, Pariente MI, Siles JA, Melero JA (2017) Low-cost Fe/SiO2 catalysts for continuous Fenton processes. Catal Today 280:176–183. doi:10.1016/j.cattod.2016.04.044

    Article  CAS  Google Scholar 

  • Melero JA, Calleja G, Martínez F, Molina R (2006) Nanocomposite of crystalline Fe2O3 and CuO particles and mesostructured SBA-15 silica as an active catalyst for wet peroxide oxidation processes. Catal Commun 7:478–483. doi:10.1016/j.catcom.2006.01.008

    Article  CAS  Google Scholar 

  • Melero JA, Calleja G, Martínez F, Molina R, Pariente MI (2007) Nanocomposite Fe2O3/SBA-15: an efficient and stable catalyst for the catalytic wet peroxidation of phenolic aqueous solutions. Chem Eng J 131:245–256. doi:10.1016/j.cej.2006.12.007

    Article  CAS  Google Scholar 

  • Nakagawa H, Yamaguchi E (2012) Influence of oxalic acid formed on the degradation of phenol by Fenton reagent. Chemosphere 88:183–187. doi:10.1016/j.chemosphere.2012.02.082

    Article  CAS  Google Scholar 

  • Nidheesh PV (2015) Heterogeneous Fenton catalysts for the abatement of organic pollutants from aqueous solution: a review. RSC Adv 5:40552–40577. doi:10.1039/c5ra02023a

    Article  CAS  Google Scholar 

  • Ribeiro RS, Silva AMT, Figueiredo JL, Faria JL, Gomes HT (2016) Catalytic wet peroxide oxidation: a route towards the application of hybrid magnetic carbon nanocomposites for the degradation of organic pollutants. A review. Appl Catal B Environ 187:428–460. doi:10.1016/j.apcatb.2016.01.033

    Article  CAS  Google Scholar 

  • Santos A, Yustos P, Rodriguez S, Simon E, Romero A (2010) Fenton pretreatment in the catalytic wet oxidation of phenol. Ind Eng Chem Res 49:5583–5587. doi:10.1021/ie1004948

    Article  CAS  Google Scholar 

  • Sashkina KA, Polukhin AV, Labko VS, Ayupov AB, Lysikov AI, Parkhomchuk EV (2016) Fe-silicalites as heterogeneous Fenton-type catalysts for radiocobalt removal from EDTA chelates. Appl Catal B Environ 185:353–361. doi:10.1016/j.apcatb.2015.12.038

    Article  CAS  Google Scholar 

  • Satishkumar G, Landau MV, Buzaglo T, Frimet L, Ferentz M, Vidruk R, Wagner F, Gal Y, Herskowitz M (2013) Fe/SiO2 heterogeneous Fenton catalyst for continuous catalytic wet peroxide oxidation prepared in situ by grafting of iron released from LaFeO3. Appl Catal B Environ 138-139:276–284. doi:10.1016/j.apcatb.2013.02.040

    Article  CAS  Google Scholar 

  • Su P, Jiang L, Zhao J, Yan J, Li C, Yang Q (2012) Mesoporous graphitic carbon nanodisks fabricated via catalytic carbonization of coordination polymers. Chem Commun 48:8769–8771. doi:10.1039/c2cc34234k

    Article  CAS  Google Scholar 

  • Tang J, Wang T, Sun X, Guo Y, Xue H, Guo H, Liu M, Zhang X, He J (2013) Effect of transition metal on catalytic graphitization of ordered mesoporous carbon and Pt/metal oxide synergistic electrocatalytic performance. Micropor Mesopor Mater 177:105–112. doi:10.1016/j.micromeso.2013.04.027

    Article  CAS  Google Scholar 

  • Torad NL, Li Y, Ishihara S, Ariga K, Kamachi Y, Lian H-Y, Hamoudi H, Sakka Y, Chaikittisilp W, Wu KCW, Yamauchi Y (2014) MOF-derived nanoporous carbon as intracellular drug delivery carriers. Chem Lett 43:717–719. doi:10.1246/cl.131174

    Article  CAS  Google Scholar 

  • Wang T, Zhao H, Wang H, Liu B, Li C (2016) Research on degradation product and reaction kinetics of membrane electro-bioreactor (MEBR) with catalytic electrodes for high concentration phenol wastewater treatment. Chemosphere 155:94–99. doi:10.1016/j.chemosphere.2016.03.140

    Article  CAS  Google Scholar 

  • Wei X, Wan S, Jiang X, Wang Z, Gao S (2015) Peanut-shell-like porous carbon from nitrogen-containing poly-N-phenylethanolamine for high-performance supercapacitor. ACS Appl Mater Interfaces 7:22238–22245. doi:10.1021/acsami.5b05022

    Article  CAS  Google Scholar 

  • Yang X-j, P-f T, Zhang X-m YX, Wu T, Xu J, Y-f H (2015) The generation of hydroxyl radicals by hydrogen peroxide decomposition on FeOCl/SBA-15 catalysts for phenol degradation. AICHE J 61:166–176. doi:10.1002/aic.14625

    Article  CAS  Google Scholar 

  • Zazo JA, Casas JA, Mohedano AF, Gilarranz MA, Rodríguez JJ (2005) Chemical pathway and kinetics of phenol oxidation by Fenton’s reagent. Environ Sci Technol 39:9295–9302. doi:10.1021/es050452h

    Article  CAS  Google Scholar 

  • Zazo JA, Casas JA, Mohedano AF, Rodríguez JJ (2006) Catalytic wet peroxide oxidation of phenol with a Fe/active carbon catalyst. Appl Catal B Environ 65:261–268

    Article  CAS  Google Scholar 

  • Zeng T, Zhang X, Wang S, Ma Y, Niu H, Cai Y (2014) Assembly of a nanoreactor system with confined magnetite core and shell for enhanced Fenton-like catalysis. Chem Eur J 20:6474–6481. doi:10.1002/chem.201304221

    Article  CAS  Google Scholar 

  • Zhang S, Zhao X, Niu H, Shi Y, Cai Y, Jiang G (2009) Superparamagnetic Fe3O4 nanoparticles as catalysts for the catalytic oxidation of phenolic and aniline compounds. J Hazard Mater 167:560–566. doi:10.1016/j.jhazmat.2009.01.024

    Article  CAS  Google Scholar 

  • Zhang L, Ye H, Zhao L, Zhang L, Yao L, Zhang Y, Li H (2015) Design of isolated iron species for Fenton reactions: lyophilization beats calcination treatment. Chem Commun 51:16936–16939. doi:10.1039/c5cc06590a

    Article  CAS  Google Scholar 

  • Zheng C, Cheng X, Yang C, Zhang C, Li H, Kan L, Xia J, Sun X (2015) Hydrophilic modification of ordered mesoporous carbon supported Fe nanoparticles with enhanced adsorption and heterogeneous Fenton-like oxidation performance. RSC Adv 5:98842–98852. doi:10.1039/c5ra15156b

    Article  CAS  Google Scholar 

  • Zhou L, Shao Y, Liu J, Ye Z, Zhang H, Ma J, Jia Y, Gao W, Li Y (2014) Preparation and characterization of magnetic porous carbon microspheres for removal of methylene blue by a heterogeneous Fenton reaction. ACS Appl Mater Interfaces 6:7275–7285. doi:10.1021/am500576p

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to thank for the financial support from DST-SERB Fast Track (SR/FT/CS-138/2011) Government of India, New Delhi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satishkumar Govindaswamy.

Additional information

Responsible editor: Vítor Pais Vilar

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mani, A., Kulandaivellu, T., Govindaswamy, S. et al. Fe3O4 nanoparticle-encapsulated mesoporous carbon composite: An efficient heterogeneous Fenton catalyst for phenol degradation. Environ Sci Pollut Res 25, 20419–20429 (2018). https://doi.org/10.1007/s11356-017-9663-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-9663-4

Keywords

Navigation