Skip to main content
Log in

Field crops (Ipomoea aquatica Forsk. and Brassica chinensis L.) for phytoremediation of cadmium and nitrate co-contaminated soils via rotation with Sedum alfredii Hance

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Phytoremediation coupled with crop rotation (PCC) is a feasible strategy for remediation of contaminated soil without interrupting crop production. The objective of this study was to develop a PCC technology system for greenhouse fields co-contaminated with Cd and nitrate using hyperaccumulator Sedum alfredii. In this system, endophytic bacterium M002 inoculation, CO2 fertilization, and fermentation residue were continuously applied to improve the growth of S. alfredii, and low-accumulator Ipomoea aquatica and low-accumulator Brassica chinensis were rotated under reasonable water management. These comprehensive management practices were shown to increase S. alfredii biomass and Cd uptake and reduce Cd and nitrate concentration in I. aquatica and B. chinensis. This crop rotating system could remove 56.5% total Cd, 62.3% DTPA extractable Cd, and 65.4% nitrate, respectively, from the co-contaminated soil in 2 years of phytoremediation, and is an effective way of remediating moderately co-contaminated soil by Cd and nitrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Acosta JA, Jansen B, Kalbitz K, Faz A, Martinez-Martinez S (2011) Salinity increases mobility of heavy metals in soils. Chemosphere 85:1318–1324

    Article  CAS  Google Scholar 

  • Alaoui-Sosse B, Gerard B, Biner P, Toussant ML, Badot PM (2005) Influence of flooding on growth, nitrogen availability in soil, and nitrate reduction of young oak seedlings (Quercus robur L.) Ann For Sci 62:593–600

    Article  CAS  Google Scholar 

  • Arao T, Kawasaki A, Baba K, Mori S, Matsumoto S (2009) Effects of water management on cadmium and arsenic accumulation and dimethylarsinic acid concentrations in Japanese rice. Environ Sci Technol 43:9361–9367

    Article  CAS  Google Scholar 

  • Bao SD (2008) Soil agricultural chemistry analysis method, the third edn. China Agriculture Press, Beijing (in Chinese)

    Google Scholar 

  • Bauddh K, Singh RP (2015) Effects of organic and inorganic amendments on bio-accumulation and partitioning of Cd in Brassica juncea and Ricinus communis. Ecol Eng 74:93–100

    Article  Google Scholar 

  • Cang L, Wang QY, Zhou DM, Xu H (2011) Effects of electrokinetic-assisted phytoremediation of a multiple-metal contaminated soil on soil metal bioavailability and uptake by Indian mustard. Sep Purif Technol 79:246–253

    Article  CAS  Google Scholar 

  • Chaffei C, Pageau K, Suzuki A, Gouia H, Ghorbel MH, Masclaux-Daubresse C (2004) Cadmium toxicity induced changes in nitrogen management in Lycopersicum esculentum leading to a metabolic safeguard through an amino acid storage strategy. Plant Cell Physiol 45:1681–1693

    Article  CAS  Google Scholar 

  • Chen CT, Chen LM, Lin CC, Kao CH (2001) Regulation of proline accumulation in detached rice leaves exposed to copper stress. Plant Sci 160:283–290

    Article  CAS  Google Scholar 

  • Chen B, Zhang YB, Rafiq MT, Khan KY, Pan FS, Yang XA, Feng Y (2014) Improvement of cadmium uptake and accumulation in Sedum alfredii by endophytic bacteria Sphingomonas SaMR12: effects on plant growth and root exudates. Chemosphere 117:367–373

    Article  CAS  Google Scholar 

  • Chen B, Ma XX, Liu GQ, Xu XM, Pan FS, Zhang J, Tian SK, Feng Y, Yang XE (2015) An endophytic bacterium Acinetobacter calcoaceticus Sasm3-enhanced phytoremediation of nitrate-cadmium compound polluted soil by intercropping Sedum alfredii with oilseed rape. Environ Sci Pollut Res 22:17625–17635

    Article  CAS  Google Scholar 

  • Cousins AB, Adam NR, Wall GW, Kimball BA, Pinter PJ, Ottman MJ, Leavitt SW, Webber AN (2003) Development of C4 photosynthesis in sorghum leaves grown under free-air CO2 enrichment (FACE). J Exp Bot 54:1969–1975

    Article  CAS  Google Scholar 

  • Deng DM, Deng JC, Li JT, Zhang J, Hu M, Lin Z, Liao B (2008) Accumulation of zinc, cadmium, and lead in four populations of Sedum alfredii growing on lead/zinc mine spoils. J Integr Plant Biol 50:691–698

    Article  CAS  Google Scholar 

  • Diao XJ, He LS, Xi BD, Wang PT (2014) Can CO2 fertilization enhance phytoremediation of organic soil contamination? Soil Sediment Contam 23:126–143

    Article  CAS  Google Scholar 

  • Duong TTT, Penfold C, Marschner P (2012) Amending soils of different texture with six compost types: impact on soil nutrient availability, plant growth and nutrient uptake. Plant Soil 354:197–209

    Article  CAS  Google Scholar 

  • Fornes F, García-de-la-Fuente R, Belda RM, Abad M (2009) “Alperujo” compost amendment of contaminated calcareous and acidic soils: effects on growth and element uptake by five Brassica species. Bioresour Technol 100:3982–3990

    Article  CAS  Google Scholar 

  • de la Fuente C, Clemente R, Martínez-Alcalá I, Tortosa G, Bernal MP (2011) Impact of fresh and composted solid olive husk and their water-soluble fractions on soil heavy metal fractionation, microbial biomass and plant uptake. J Hazard Mater 186:1283–1289

    Article  Google Scholar 

  • de Graaff MA, Six J, van Kessel C (2007) Elevated CO2 increases nitrogen rhizodeposition and microbial immobilization of root derived nitrogen. New Phytol 173:778–786

    Article  Google Scholar 

  • Guo HY, Zhu JK, Zhou H, Sun YY, Yin Y, Pei DP, Ji R, Wu JC, Wang XR (2011) Elevated CO2 levels affects the concentrations of copper and cadmium in crops grown in soil contaminated with heavy metals under fully open-air field conditions. Environ Sci Technol 45:6997–7003

    Article  CAS  Google Scholar 

  • Hammer D, Keller C (2003) Phytoextraction of Cd and Zn with Thlaspi caerulescens in field trials. Soil Use Manage 19:144–149

    Article  Google Scholar 

  • Han X, Hao XY, Lam SK, Wang HR, Li YC, Wheeler T, Ju H, Lin ED (2015) Yield and nitrogen accumulation and partitioning in winter wheat under elevated CO2: a 3-year free-air CO2 enrichment experiment. Agric Ecosyst Environ 209:132–137

    Article  CAS  Google Scholar 

  • Hansen M, Clough TJ, Elberling B (2014) Flooding-induced N2O emission bursts controlled by pH and nitrate in agricultural soils. Soil Biol Biochem 69:17–24

    Article  CAS  Google Scholar 

  • Hu S, Firestone MK, Chapin FS (1999) Soil microbial feedbacks to atmospheric CO2 enrichment. Trends Ecol Evol 14:433–437

    Article  CAS  Google Scholar 

  • Hu NJ, Luo YM, Wu LH, Song J (2007) A field lysimeter study of heavy metal movement down the profile of soils with multiple metal pollution during chelate-enhanced phytoremediation. Int J Phytoremediat 9:257–268

    Article  CAS  Google Scholar 

  • Hu YH, Nan ZR, Su JQ, Wang SL (2014) Chelant-assisted uptake and accumulation of Cd by poplar from calcareous arable soils around Baiyin nonferrous metal smelters, northern China. Arid Land Res Manag 28:340–354

    Article  CAS  Google Scholar 

  • Hungate BA, Dijkstra P, Johnson DW, Hinkle CR, Drake BG (1999) Elevated CO2 increases nitrogen fixation and decreases soil nitrogen mineralization in Florida scrub oak. Glob Chang Biol 5:781–789

    Article  Google Scholar 

  • Ishikawa K, Ohmori T, Miyamoto H, Ito T, Kumagai Y, Sonoda M, Matsumoto J, Miyamoto H, Kodama H (2013) Denitrification in soil amended with thermophile-fermented compost suppresses nitrate accumulation in plants. Appl Microbiol Biotechnol 97:1349–1359

    Article  CAS  Google Scholar 

  • Islam MA, Macdonald SE (2009) Current uptake of 15N-labeled ammonium and nitrate in flooded and non-flooded black spruce and tamarack seedlings. Ann For Sci 66:102

    Article  Google Scholar 

  • Jaffrin A, Bentounes N, Joan AM, Makhlouf S (2003) Landfill biogas for heating greenhouses and providing carbon dioxide supplement for plant growth. Biosyst Eng 86:113–123

    Article  Google Scholar 

  • January MC, Cutright TJ, van Keulen H, Wei R (2008) Hydroponic phytoremediation of Cd, Cr, Ni, As, and Fe: can Helianthus annuus hyperaccumulate multiple heavy metals? Chemosphere 70:531–537

    Article  CAS  Google Scholar 

  • Jia Y, Tang SR, Wang RG, Ju XH, Ding YZ, Tu SX, Smith DL (2010) Effects of elevated CO2 on growth, photosynthesis, elemental composition, antioxidant level, and phytochelatin concentration in Lolium mutiforum and Lolium perenne under Cd stress. J Hazard Mater 180:384–394

    Article  CAS  Google Scholar 

  • Jin CW, Du ST, Wang Y, Condon J, Lin XY, Zhang YS (2009) Carbon dioxide enrichment by composting in greenhouses and its effect on vegetable production. J Plant Nutr Soil Sci 172:418–424

    Article  CAS  Google Scholar 

  • Ju XT, Kou CL, Christie P, Dou ZX, Zhang FS (2007) Changes in the soil environment from excessive application of fertilizers and manures to two contrasting intensive cropping systems on the North China Plain. Environ Pollut 145:497–506

    Article  CAS  Google Scholar 

  • Khan AG (2005) Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation. J Trace Elem Med Biol 18:355–364

    Article  CAS  Google Scholar 

  • Khan MIR, Iqbal N, Masood A, Mobin M, Anjum NA, Khan NA (2016) Modulation and significance of nitrogen and sulfur metabolism in cadmium challenged plants. Plant Growth Regul 78:1–11

    Article  CAS  Google Scholar 

  • Kim S, Kang H (2011) Effects of elevated CO2 and Pb on phytoextraction and enzyme activity. Water Air Soil Pollut 219:365–375

    Article  CAS  Google Scholar 

  • Knight B, Zhao FJ, McGrath SP, Shen ZG (1997) Zinc and cadmium uptake by the hyperaccumulator Thlaspi caerulescens in contaminated soils and its effects on the concentration and chemical speciation of metals in soil solution. Plant Soil 197:71–78

    Article  CAS  Google Scholar 

  • Körner C (2000) Biosphere responses to CO2 enrichment. Ecol Appl 10:1590–1619

    Google Scholar 

  • Körner C, Arnone JA (1992) Response to elevated carbon dioxide in artificial tropical ecosystems. Sci 257:1672–1675

    Article  Google Scholar 

  • Lecompte F (2012) Management of soil nitrate heterogeneity resulting from crop rows in a lettuce-tomato rotation under a greenhouse. Agron Sustain Dev 32:811–819

    Article  Google Scholar 

  • Lefèvre I, Marchal G, Meerts P, Corréal E, Lutts S (2009) Chloride salinity reduces cadmium accumulation by the Mediterranean halophyte species Atriplex halimus L. Environ Exp Bot 65:142–152

    Article  Google Scholar 

  • Li HS (2000) Principle and technology of plant physiological and biochemical experiment. Higher Education Press, Beijing (in Chinese)

    Google Scholar 

  • Li WC, Wong MH (2012) Interaction of Cd/Zn hyperaccumulating plant (Sedum alfredii) and rhizosphere bacteria on metal uptake and removal of phenanthrene. J Hazard Mater 209:421–433

    Article  Google Scholar 

  • Li JY, Fu YL, Pike SM, Bao J, Tian W, Zhang Y, Chen CZ, Zhang Y, Li HM, Huang J, Li LG, Schroeder JI, Gassmann W, Gong JM (2010a) The Arabidopsis nitrate transporter NRT1.8 functions in nitrate removal from the xylem sap and mediates cadmium tolerance. Plant Cell 22:1633–1646

    Article  CAS  Google Scholar 

  • Li QS, Cai SS, Mo CH, Chu B, Peng LH, Yang FB (2010b) Toxic effects of heavy metals and their accumulation in vegetables grown in a saline soil. Ecotox Environ Safe 73:84–88

    Article  CAS  Google Scholar 

  • Li ZY, Tang SR, Deng XF, Wang RG, Song ZG (2010c) Contrasting effects of elevated CO2 on Cu and Cd uptake by different rice varieties grown on contaminated soils with two levels of metals: implication for phytoextraction and food safety. J Hazard Mater 177:352–361

    Article  CAS  Google Scholar 

  • Li HY, Wei DQ, Shen M, Zhou ZP (2012a) Endophytes and their role in phytoremediation. Fungal Divers 54:11–18

    Article  Google Scholar 

  • Li TQ, Di ZZ, Han X, Yang XE (2012b) Elevated CO2 improves root growth and cadmium accumulation in the hyperaccumulator Sedum alfredii. Plant Soil 354:325–334

    Article  CAS  Google Scholar 

  • Li TQ, Tao Q, Han X, Yang XE (2013) Effects of elevated CO2 on rhizosphere characteristics of Cd/Zn hyperaccumulator Sedum alfredii. Sci Total Environ 454:510–516

    Article  Google Scholar 

  • Li TQ, Tao Q, Liang CF, Yang XE (2014) Elevated CO2 concentration increase the mobility of Cd and Zn in the rhizosphere of hyperaccumulator Sedum alfredii. Environ Sci Pollut Res 21:5899–5908

    Article  CAS  Google Scholar 

  • Li N, Kang Y, Pan WJ, Zeng LX, Zhang QY, Luo JW (2015) Concentration and transportation of heavy metals in vegetables and risk assessment of human exposure to bioaccessible heavy metals in soil near a waste-incinerator site, South China. Sci Total Environ 521:144–151

    Article  Google Scholar 

  • Liu WT, Zhou QX, Sun YB, Liu R (2009) Identification of Chinese cabbage genotypes with low cadmium accumulation for food safety. Environ Pollut 157:1961–1967

    Article  CAS  Google Scholar 

  • Lombi E, Zhao FJ, Dunham SJ, McGrath SP (2001) Phytoremediation of heavy metal-contaminated soils: natural hyperaccumulation versus chemically enhanced phytoextraction. J Environ Qual 30:1919–1926

    Article  CAS  Google Scholar 

  • Long XX, Zhang YG, Jun D, Zhou QX (2009) Zinc, cadmium and lead accumulation and characteristics of rhizosphere microbial population associated with hyperaccumulator Sedum alfredii Hance under natural conditions. Bull Environ Contam Toxicol 82:460–467

    Article  CAS  Google Scholar 

  • Long XX, Chen XM, Chen YG, Woon-Chung WJ, Wei ZB, Wu QT (2011) Isolation and characterization endophytic bacteria from hyperaccumulator Sedum alfredii Hance and their potential to promote phytoextraction of zinc polluted soil. World J Microbiol Biotechnol 27:1197–1207

    Article  CAS  Google Scholar 

  • Lu LL, Tian SK, Yang XE, Wang XC, Brown P, Li TQ, He ZL (2008) Enhanced-root-to shoot translocation of cadmium in the hyperaccumulating ecotype of Sedum alfredii. J Exp Bot 59:3203–3213

    Article  CAS  Google Scholar 

  • Luttge U (2004) Ecophysiology of crassulacean acid metabolism (CAM). Ann Bot Lond 93:629–652

    Article  Google Scholar 

  • Ma Y, Rajkumar M, Luo Y, Freitas H (2011) Inoculation of endophytic bacteria on host and non-host plants—effects on plant growth and Ni uptake. J Hazard Mater 195:230–237

    Article  CAS  Google Scholar 

  • McGrath SP (1998) Phytoextraction for soil remediation. In: Brooks R (Ed) Plants that hyperaccumulate heavy metals their role in phytoremediation, microbiology, archaeology, mineral exploration and phytomining. CAB International, New York, pp 261–287

  • McGrath SP, Lombi E, Gray CW, Caille N, Dunham SJ, Zhao FJ (2006) Field evaluation of Cd and Zn phytoextraction potential by the hyperaccumulators Thlaspi caerulescens and Arabidopsis halleri. Environ Pollut 141:115–125

  • Meng QF, Yue SC, Hou P, Cui ZL, Chen XP (2016) Improving yield and nitrogen use efficiency simultaneously for maize and wheat in China: a review. Pedosphere 26:137–147

    Article  Google Scholar 

  • Mishra S, Heckathorn SA, Frantz JM (2012) Elevated CO2 affects plant responses to variation in boron availability. Plant Soil 350:117–130

    Article  CAS  Google Scholar 

  • Motesharezadeh B, Navabzadeh M, Liyaghat AM (2016) Modeling phytoremediation of cadmium contaminated soil with sunflower (Helianthus annus) under salinity stress. Int J Environ Res 10:109–118

    CAS  Google Scholar 

  • Noyes PD, McElwee MK, Mille HD, Clark BW, Van Tiemm LA, Walcott KC, Erwin KN, Levin ED (2009) The toxicology of climate change: environmental contaminants in a warming world. Environ Int 35:971–986

    Article  CAS  Google Scholar 

  • Ozkutlu F, Turan M (2013) Soil salinity increase Cd uptake of lettuce (Lattuca sativa L.) Carpath J Earth Env 8:97–106

    Google Scholar 

  • Pan FS, Meng Q, Wang Q, Luo S, Chen B, Khan KY, Yang XE, Feng Y (2016) Endophytic bacterium Sphingomonas SaMR12 promotes cadmium accumulation by increasing glutathione biosynthesis in Sedum alfredii Hance. Chemosphere 154:358–366

    Article  CAS  Google Scholar 

  • Pardo T, Clemente R, Bernal MP (2011) Effects of compost, pig slurry and lime on trace element solubility and toxicity in two soils differently affected by mining activities. Chemosphere 84:642–650

    Article  CAS  Google Scholar 

  • Pritchard SG, Prior SA, Rogers HH, Davis MA, Runion GB, Popham TW (2006) Effects of elevated atmospheric CO2 on root dynamics and productivity of sorghum grown under conventional and conservation agricultural management practices. Agric Ecosyst Environ 113:175–183

    Article  Google Scholar 

  • Pulford ID, Watson C (2003) Phytoremediation of heavy metal-contaminated land by trees—a review. Environ Int 29:529–540

    Article  CAS  Google Scholar 

  • Rajkumar M, Sandhya S, Prasad MNV, Freitas H (2012) Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnol Adv 30:1562–1574

    Article  CAS  Google Scholar 

  • Rajkumar M, Prasad MNV, Swaminathan S, Freitas H (2013) Climate change driven plant-metal-microbe interactions. Environ Int 53:74–86

    Article  CAS  Google Scholar 

  • Romkens P, Bouwman L, Japenga J, Draaisma C (2002) Potentials of drawbacks of chelate-enhanced phytoremediation of soils. Environ Pollut 116:109–121

    Article  CAS  Google Scholar 

  • Santos MSS, Pedro CA, Goncalves SC, Ferreira SMF (2015) Phytoremediation of cadmium by the facultative halophyte plant Bolboschoenus maritimus (L.) Palla, at different salinities. Environ Sci Pollut Res 22:15598–15609

    Article  CAS  Google Scholar 

  • Sheng XF, Xia JJ, Jiang CY, He LY, Qian M (2008) Characterization of heavy metal-resistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growth and lead accumulation of rape. Environ Pollut 156:1164–1170

    Article  CAS  Google Scholar 

  • Sirguey C, Ouvrard S (2013) Contaminated soils salinity, a threat for phytoextraction? Chemosphere 91:269–274

    Article  CAS  Google Scholar 

  • Song NN, Wang FL, Zhang CB, Tang SR, Guo JK, Ju XH, Smith DL (2013) Fungal inoculation and elevated CO2 mediate growth of Lolium mutiforum and Phytolacca americana, metal uptake, and metal bioavailability in metal-contaminated soil: evidence from DGT measurement. Int J Phytoremed 15:268–282

    Article  CAS  Google Scholar 

  • Song NN, Ma YB, Zhao YJ, Tang SR (2015) Elevated ambient carbon dioxide and Trichoderma inoculum could enhance cadmium uptake of Lolium perenne explained by changes of soil pH, cadmium availability and microbial biomass. Appl Soil Ecol 85:56–64

    Article  Google Scholar 

  • Taiwo AM, Gbadebo AM, Oyedepo JA, Ojekunle ZO, Alo OM, Oyeniran AA, Onalaja OJ, Ogunjimi D, Taiwo OT (2016) Bioremediation of industrially contaminated soil using compost and plant technology. J Hazard Mater 304:166–172

    Article  CAS  Google Scholar 

  • Tandy S, Schulin R, Nowack B (2006) Uptake of metals during chelant-assisted phytoextraction with EDDS related to the solubilized metal concentration. Enciron Sci Technol 40:2753–2758

    Article  CAS  Google Scholar 

  • Tang S, Xi L, Zheng J, Li H (2003a) Response to elevated CO2 of Indian mustard and sunflower growing on copper contaminated soil. Bull Environ Contam Toxicol 71:988–997

    Article  CAS  Google Scholar 

  • Tang SR, Xi L, Zheng JM, Li HY (2003b) Response to elevated CO2 of Indian mustard and sunflower growing on copper contaminated soil. Bull Environ Contam Toxicol 71:988–997

    Article  CAS  Google Scholar 

  • Tang L, Luo WJ, Tian SK, He ZL, Stoffella PJ, Yang XE (2016) Genotypic differences in cadmium and nitrate co-accumulation among the Chinese cabbage genotypes under field conditions. Sci Hortic 201:92–100

    Article  CAS  Google Scholar 

  • Tessier A, Campbell PGC, Bisson M (1979) Sequential extraction procedure for the speciation of particulate trace metals. Anal Chem 51:844–850

    Article  CAS  Google Scholar 

  • Tian SK, Lu LL, Yang XE, Labavitch JM, Huang YY, Brown P (2009) Stem and leaf sequestration of zinc at the cellular level in the hyperaccumulator Sedum alfredii. New Phytol 182:116–126

    Article  CAS  Google Scholar 

  • Vamerali T, Bandiera M, Mosca G (2010) Field crops for phytoremediation of metal-contaminated land. A review. Environ Chem Lett 8:1–17

    Article  CAS  Google Scholar 

  • Vangronsveld J, Herzig R, Weyens N, Boulet J, Adriaensen K, Ruttens A, Thewys T, Vassilev A, Meers E, Nehnevajova E (2009) Phytoremediation of contaminated soils and groundwater: lessons from the field. Environ Sci Pollut Res 16:765–794

    Article  CAS  Google Scholar 

  • Wu HB, Tang SR, Zhang XM, Guo JK, Song ZG, Tian SA, Smith DL (2009) Using elevated CO2 to increase the biomass of a Sorghum vulgare × Sorghum vulgare var. sudanense hybrid and Trifolium pratense L. and to trigger hyperaccumulation of cesium. J Hazard Mater 170:861–870

    Article  CAS  Google Scholar 

  • Xiao QQ, Wong MH, Huang L, Ye ZH (2015) Effects of cultivars and water management on cadmium accumulation in water spinach (Ipomoea aquatica Forsk.) Plant Soil 391:33–49

    Article  CAS  Google Scholar 

  • Xin JL, Huang BF, Yang JZ, Yang ZY, Yuan JG, Mu YX (2013) Role of roots in cadmium accumulation of two water spinach cultivars: reciprocal grafting and histochemical experiments. Plant Soil 366:425–432

    Article  CAS  Google Scholar 

  • Yang X, Long XX, Ni WZ, Fu CX (2002) Sedum alfredii H: a new Zn hyperaccumulating plant first found in China. Chin Sci Bull 47:1634–1637

    Article  CAS  Google Scholar 

  • Yang XE, Long XX, Ye HB, He ZL, Calvert DV, Stoffella PJ (2004) Cadmium tolerance and hyperaccumulation in a new Zn-hyperaccumulating plant species (Sedum alfredii Hance). Plant Soil 259:181–189

  • Zhang XC, Lin L, Zhu ZQ, Yang XE, Wang YY, An QL (2013) Colonization and modulation of host growth and metal uptake by endophytic bacteria of Sedum alfredii. Int J Phytoremed 15:51–64

    Article  CAS  Google Scholar 

  • Zhang CJ, Sale PWG, Tang CX (2016) Cadmium uptake by Carpobrotus rossii (Haw.) Schwantes under different saline conditions. Environ Sci Pollut Res 23:13480–13488

    Article  CAS  Google Scholar 

  • Zhao RR, He P, Xie JG, Johnston AM, Xu XP, Qiu SJ, Zhao SC (2016) Ecological intensification management of maize in northeast China: agronomic and environmental response. Agric Ecosyst Environ 224:123–130

    Article  Google Scholar 

  • Zheng JM, Wang HY, Li ZQ, Tang SR, Chen ZY (2008) Using elevated carbon dioxide to enhance copper accumulation in Pteridium revolutum, a copper-tolerant plant, under experimental conditions. Int J Phytoremed 10:161–172

    Article  CAS  Google Scholar 

  • Zhou ZY, Wang MJ, Wang JS (2000) Nitrate and nitrite contamination in vegetables in China. Food Rev Int 16:61–76

    Article  CAS  Google Scholar 

  • Zhou KQ, Sui YY, Liu XB, Zhang XY, Jin J, Wang GH, Herbert SJ (2015) Crop rotation with nine-year continuous cattle manure addition restores farmland productivity of artificially eroded Mollisols in Northeast China. Field Crop Res 171:138–145

    Article  Google Scholar 

  • Zhu ZQ, Yang XE, Wang K, Huang HG, Zhang XC, Fang H, Li TQ, Alva AK, He ZL (2012) Bioremediation of Cd-DDT co-contaminated soil using the Cd-hyperaccumulator Sedum alfredii and DDT-degrading microbes. J Hazard Mater 235:144–151

    Article  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the Key Projects from Ministry of Science and Technology of China (#2016YFD0800805), Zhejiang Provincial Science and Technology Bureau (#2015C02011-3; #2015C03020-2), and from the Fundamental Research Funds for the Central University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoe Yang.

Additional information

Responsible editor: Elena Maestri

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, L., Luo, W., Chen, W. et al. Field crops (Ipomoea aquatica Forsk. and Brassica chinensis L.) for phytoremediation of cadmium and nitrate co-contaminated soils via rotation with Sedum alfredii Hance. Environ Sci Pollut Res 24, 19293–19305 (2017). https://doi.org/10.1007/s11356-017-9146-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-9146-7

Keywords

Navigation