Skip to main content
Log in

Biochar effects on uptake of cadmium and lead by wheat in relation to annual precipitation: a 3-year field study

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Biochar has been widely studied for its ability to reduce plant uptake of heavy metals by lowering metal bioavailabilities through adsorption and pH-driven fixation reactions. However, the long-term effect of biochar on heavy metal bioavailabilities in alkaline soils under natural redox condition is rarely studied. Here, we report a study examining the effects of biochar on bioavailability and partitioning of cadmium (Cd) and lead (Pb) among different soil fractions over 3 years in a field study with wheat (Triticum aestivum L.). Plots were established on two similar soils having low and high levels of contamination, both of which were amended in the first year with wheat straw biochar at 0, 20, and 40 t ha−1. Precipitation patterns varied greatly over the study period, with 2014 having record drought, which was followed by 2 years having extreme flooding events. Results showed a significant increase in grain yield and reductions in Cd and Pb concentrations in wheat grain in the biochar-amended soils in 2014. In contrast, bioavailable (exchangeable) heavy metal concentrations and plant uptake of Cd and Pb were significantly higher in the subsequent very wet years in 2015 and 2016, where the effects of biochar were much more variable and had an overall lesser effect on reducing heavy metal uptake. The results suggest that fluctuations in soil pH and redox caused by periodic drought and flood cycles strongly drive metal cycling through mobilization and immobilization of metals associated with different mineral phases. Under these conditions, biochar may have reduced efficacy for reducing heavy metal uptake in wheat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adriano DC, Wenzel WW, Vangronsveld J, Bolan NS (2004) Role of assisted natural remediation in environmental cleanup. Geoderma 122:121–142

    Article  CAS  Google Scholar 

  • Alburquerque JA, Salazar P, Barrón V, Torrent J, del Campillo MDC, Gallardo A, Villar R (2013) Enhanced wheat yield by biochar addition under different mineral fertilization levels. Agron Sustain Dev 33:475–484

    Article  CAS  Google Scholar 

  • Al-Wabel MI, Usman AR, El-Naggar AH, Aly AA, Ibrahim HM, Elmaghraby S, Al-Omran A (2015) Conocarpus biochar as a soil amendment for reducing heavy metal availability and uptake by maize plants. Saudi J Biol Sci 22:503–511

    Article  CAS  Google Scholar 

  • Beesley L, Inneh OS, Norton GJ, Moreno-Jimenez E, Pardo T, Clemente R, Dawson JJ (2014) Assessing the influence of compost and biochar amendments on the mobility and toxicity of metals and arsenic in a naturally contaminated mine soil. Environ Pollut 186:195–202

    Article  CAS  Google Scholar 

  • Beesley L, Moreno-Jiménez E, Gomez-Eyles JL, Harris E, Robinson B, Sizmur T (2011) A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils. Environ Pollut 159:3269–3282

    Article  CAS  Google Scholar 

  • Bian R, Chen D, Liu X, Cui L, Li L, Pan G, Chang A (2013) Biochar soil amendment as a solution to prevent Cd-tainted rice from China: results from a cross-site field experiment. Ecol Eng 58:378–383

    Article  Google Scholar 

  • Bian R, Joseph S, Cui L et al (2014a) A three-year experiment confirms continuous immobilization of cadmium and lead in contaminated paddy field with biochar amendment. J Hazard Mater 272:121–128

    Article  CAS  Google Scholar 

  • Bian R, Zhang A, Li L, Pan G, Zheng J, Zhang X, Zheng J, Joseph S, Chang A (2014b) Effect of municipal biowaste biochar on greenhouse gas emissions and metal bioaccumulation in a slightly acidic clay rice paddy. Bioresources 9:685–703

    CAS  Google Scholar 

  • Cao X, Ma L, Gao B, Harris W (2009) Dairy-manure derived biochar effectively sorbs lead and atrazine. Environ Sci Technol 43:3285–3291

    Article  CAS  Google Scholar 

  • Chaney RL, Reeves PG, Ryan JA, Simmons RW, Welch RM, Angle JS (2004) An improved understanding of soil Cd risk to humans and low cost methods to phytoextract Cd from contaminated soils to prevent soil Cd risks. Biometals 17:549–553

    Article  CAS  Google Scholar 

  • Chen B, Chen Z (2009) Sorption of naphthalene and 1-naphthol by biochars of orange peels with different pyrolytic temperatures. Chemosphere 76:127–133

    Article  CAS  Google Scholar 

  • Chen D, Guo H, Li R, Li L, Pan G, Chang A, Joseph S (2016) Low uptake affinity cultivars with biochar to tackle Cd-tainted rice—a field study over four rice seasons in Hunan, China. Sci Total Environ 541:1489–1498

    Article  CAS  Google Scholar 

  • Cui L, Pan G, Li L, Yan J, Zhang A, Bian R, Chang A (2012) The reduction of wheat Cd uptake in contaminated soil via biochar amendment: a two-year field experiment. Bioresources 7:5666–5676

    Article  Google Scholar 

  • Cui L, Li L, Zhang A, Pan G, Bao D, Chang A (2011) Biochar amendment greatly reduces rice Cd uptake in a contaminated paddy soil: a two-year field experiment. Bioresources 6(3):2605–2618

    CAS  Google Scholar 

  • Dai XP, Feng L, Ma XW, Zhang YM (2012) Concentration level of heavy metals in wheat grains and the health risk assessment to local inhabitants from Baiyin, Gansu, China. Adv Mater Res 518:951–956

    Article  Google Scholar 

  • Ehsan M, Barakat MA, Husein DZ, Ismail SM (2014) Immobilization of Ni and Cd in soil by biochar derived from unfertilized dates. Water Air Soil Pollut 225:2123

    Article  Google Scholar 

  • Fang Y, Singh BP, Singh B (2014) Temperature sensitivity of biochar and native carbon mineralisation in biochar-amended soils. Agric Ecosyst Environ 191:158–167

    Article  CAS  Google Scholar 

  • FAO (2012) ProdStat. Core Production Data Base, Electronic resource under http://faostat.fao.org. Accessed 30 June 2015

  • Grimm NB, Foster D, Groffman P, Grove JM, Hopkinson CS, Nadelhoffer KJ, Pataki DE, Peters DPC (2008) The changing landscape: ecosystem responses to urbanization and pollution across climatic and societal gradients. Front Ecol Environ 6(5):264–272

  • Guo Y, Tang W, Wu J, Huang Z, Dai J (2014) Mechanism of Cu (II) adsorption inhibition on biochar by its aging process. J Environ Sci 26:2123–2130

    Article  Google Scholar 

  • Houben D, Sonnet P (2015) Impact of biochar and root-induced changes on metal dynamics in the rhizosphere of Agrostis capillaris and Lupinus albus. Chemosphere 139:644–651

    Article  CAS  Google Scholar 

  • Huang M, Zhou S, Sun B, Zhao Q (2008) Heavy metals in wheat grain: assessment of potential health risk for inhabitants in Kunshan, China. Sci Total Environ 405:54–61

    Article  CAS  Google Scholar 

  • Janus A, Pelfrêne A, Heymans S, Deboffe C, Douay F, Waterlot C (2015) Elaboration, characteristics and advantages of biochars for the management of contaminated soils with a specific overview on Miscanthus biochars. J Environ Manag 162:275–289

    Article  CAS  Google Scholar 

  • Jiang J, RK X, Jiang TY, Li Z (2012) Immobilization of Cu (II), Pb (II) and Cd (II) by the addition of rice straw derived biochar to a simulated polluted Ultisol. J Hazard Mater 229:145–150

    Article  Google Scholar 

  • Keller C, Rizwan M, Davidian JC, Pokrovsky OS, Bovet N, Chaurand P, Meunier JD (2015) Effect of silicon on wheat seedlings (Triticum turgidum L.) grown in hydroponics and exposed to 0 to 30 A mu M Cu. Planta 241:847–860

    Article  CAS  Google Scholar 

  • Laird DA, Fleming P, Davis DD, Horton R, Wang B, Karlen DL (2010) Impact of biochar amendments on the quality of a typical Midwestern agricultural soil. Geoderma 158:443–449

    Article  CAS  Google Scholar 

  • Lim JE, Lee SS, Ok YS (2015) Efficiency of poultry manure biochar for stabilization of metals in contaminated soil. J Appl Biol Chem 58:39–50

    Article  CAS  Google Scholar 

  • Lindsay, W.L (1979) Chemical equilibria in soils. John Wiley and Sons Ltd

  • Liu K, Lv J, He W, Zhang H, Cao Y, Dai Y (2015) Major factors influencing cadmium uptake from the soil into wheat plants. Ecotoxicol Environ Saf 113:207–213

    Article  CAS  Google Scholar 

  • Liu X, Zhang A, Ji C, Joseph S, Bian R, Li L, Pan G, Paz-Ferreiro J (2013) Biochar’s effect on crop productivity and the dependence on experimental conditions-a meta-analysis of literature data. Plant Soil 373:583–594

    Article  CAS  Google Scholar 

  • Ma L, Xu R, Jiang J (2010) Adsorption and desorption of Cu (II) and Pb (II) in paddy soils cultivated for various years in the subtropical China. Environ Sci 22:689–695

    Article  CAS  Google Scholar 

  • McBride M, Sauve S, Hendershot W (1997) Solubility control of Cu, Zn, Cd and Pb in contaminated soils. Eur J Soil Sci 48:337–346

    Article  CAS  Google Scholar 

  • Moreno-Jimenez E, Manuel Fernandez J, Puschenreiter M, Williams PN, Plaza C (2016) Availability and transfer to grain of As, Cd, Cu, Ni, Pb and Zn in a barley agri-system: impact of biochar, organic and mineral fertilizers. Agric Ecosyst Environ 219:171–178

    Article  CAS  Google Scholar 

  • Nagajyoti PC, Lee KD, Sreekanth TVM (2010) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8(3):199–216

    Article  CAS  Google Scholar 

  • Namgay T, Singh B, Singh BP (2010) Influence of biochar application to soil on the availability of As, Cd, Cu, Pb, and Zn to maize ( L.). Aust J Soil Res 48(7):638–647

  • Rees F, Simonnot MO, Morel JL (2014) Short-term effects of biochar on soil heavy metal mobility are controlled by intra-particle diffusion and soil pH increase. Eur J Soil Sci 65:149–161

    Article  CAS  Google Scholar 

  • Rees F, Germain C, Sterckeman T, Morel J-L (2015) Plant growth and metal uptake by a non-hyperaccumulating species (Lolium perenne) and a Cd-Zn hyperaccumulator (Noccaea caerulescens) in contaminated soils amended with biochar. Plant Soil 395:57–73

    Article  CAS  Google Scholar 

  • Rinklebe J, Shaheen SM, Frohne T (2016) Amendment of biochar reduces the release of toxic elements under dynamic redox conditions in a contaminated floodplain soil. Chemosphere 142:41–47

    Article  CAS  Google Scholar 

  • Rizwan M, Meunier JD, Davidian JC, Pokrovsky OS, Bovet N, Keller C (2016a) Silicon alleviates Cd stress of wheat seedlings (Triticum turgidumL. cv. Claudio) grown in hydroponics. Environ Sci Pollut Res 23:1414–1427

    Article  CAS  Google Scholar 

  • Rizwan M, Ali S, Qayyum MF, Ibrahim M, Zia-ur-Rehman M, Abbas T, Ok YS (2016b) Mechanisms of biochar-mediated alleviation of toxicity of trace elements in plants: a critical review. Environ Sci Pollut Res 23:2230–2248

    Article  CAS  Google Scholar 

  • Rizwan M, Ali S, Abbas T, Zia-ur-Rehman M, Hannan F, Keller C, Al-Wabel MI, Ok YS (2016c) Cadmium minimization in wheat: A critical review. Ecotoxicol Environ Saf 130:43–53

    Article  CAS  Google Scholar 

  • Schweiker C, Wagner A, Peters A, Bischoff WA, Kaupenjohann M (2014) Biochar reduces zinc and cadmium but not copper and lead leaching on a former sewage field. J Environ Qual 43:1886–1893

    Article  Google Scholar 

  • Shaheen SM, Rinklebe J, Selim MH (2015) Impact of various amendments on immobilization and phytoavailability of nickel and zinc in a contaminated floodplain soil. Int J Environ Sci Technol 12:2765–2776

    Article  CAS  Google Scholar 

  • Sun J, Lian F, Liu Z, Zhu L, Song Z (2014) Biochars derived from various crop straws: characterization and Cd(II) removal potential. Ecotoxicol Environ Saf 106:226–231

    Article  CAS  Google Scholar 

  • Sungur A, Soylak M, Yilmaz S, Ozcan H (2014) Determination of heavy metals in sediments of the Ergene River by BCR sequential extraction method. Environ Earth Sci 72:3293–3305

    Article  CAS  Google Scholar 

  • Tang ZW, Zhang LZ, Huang QF, Yang YF, Nie ZQ, Cheng JL, Yang J, Wang YW, Chai M (2015) Contamination and risk of heavy metals in soils and sediments from a typical plastic waste recycling area in North China. Ecotox Environ Safet 122:343–351

    Article  Google Scholar 

  • Vangronsveld J, Herzig R, Weyens N, Boulet J, Adriaensen K, Ruttens A, Thewys T, Vassilev A, Meers E, Nehnevajova E, van der Lelie D, Mench M (2009) Phytoremediation of contaminated soils and groundwater: lessons from the field. Environ Sci Pollut Res 16:765–794

    Article  CAS  Google Scholar 

  • Venegas A, Rigol A, Vidal M (2015) Viability of organic wastes and biochars as amendments for the remediation of heavy metal-contaminated soils. Chemosphere 119:190–198

    Article  CAS  Google Scholar 

  • Yang X, Liu J, McGrouther K, Huang H, Lu K, Guo X, He L, Lin X, Che L, Ye Z, Wang H (2016) Effect of biochar on the extractability of heavy metals (Cd, Cu, Pb, and Zn) and enzyme activity in soil. Environ Sci Pollut Res 23:974–984

    Article  CAS  Google Scholar 

  • Yousaf B, Liu G, Wang R, Rehman MZ, Rizwan MS, Imtiaz M, Murtaza G, Shakoor A (2016) Investigating the potential influence of biochar and traditional organic amendments on the bioavailability and transfer of Cd in the soil-plant system. Environ Earth Sci 75:1–10

    Article  CAS  Google Scholar 

  • Zaheer IE, Ali S, Rizwan M, Farid M, Shakoor MB, Gill RA, Najeeb U, Iqbal N, Ahmad R (2015) Citric acid assisted phytoremediation of copper by Brassica napus L. Ecotoxicol Environ Saf 120:310–317

    Article  CAS  Google Scholar 

  • Zeng G, Wu H, Liang J, Guo S, Huang L, Xu P, He Y (2015) Efficiency of biochar and compost (or composting) combined amendments for reducing Cd, Cu, Zn and Pb bioavailability, mobility and ecological risk in wetland soil. RSC Adv 5:34541–34548

    Article  CAS  Google Scholar 

  • Zhang G, Guo X, Zhao Z, He Q, Wang S, Zhu Y, Yan Y, Liu X, Sun K, Zhao Y, Qian T (2016) Effects of biochars on the availability of heavy metals to ryegrass in an alkaline contaminated soil. Environ Pollut 218:513–522

    Article  CAS  Google Scholar 

Download references

Funding

This study was financially supported by the National Key Research and Development Program of China (2016YEFD0800306), the National Non-profit Program by Ministry of Agriculture of China (201303095-11), A Project Funded by the Priority AcademicProgram Development of Jiangsu Higher Education Institutions and Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lianqing Li.

Additional information

Responsible editor: Hailong Wang

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sui, F., Zuo, J., Chen, D. et al. Biochar effects on uptake of cadmium and lead by wheat in relation to annual precipitation: a 3-year field study. Environ Sci Pollut Res 25, 3368–3377 (2018). https://doi.org/10.1007/s11356-017-0652-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-0652-4

Keywords

Navigation