Skip to main content
Log in

Oxidative removal of metronidazole from aqueous solution by thermally activated persulfate process: kinetics and mechanisms

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Metronidazole (MNZ) is widely used in clinical applications and animal feed as an antibiotic agent and additive, respectively. Widespread occurrence of MNZ in wastewater treatment and hospital effluents has been reported. In this study, the mechanism of MNZ degradation in aqueous solutions via thermally activated persulfate (TAP) process was established under different conditions. The kinetic model was derived for MNZ degradation and followed pseudo-first-order reaction kinetics and was consistent with the model fitted by experimental data (R 2 > 98.8%). The rate constant increased with the initial dosage of persulfate, as well as the temperature, and the yielding apparent activation energy was 23.9 kcal mol−1. The pH of the solutions did not have significant effect on MNZ degradation. The degradation efficiency of MNZ reached 96.6% within 180 min for an initial MNZ concentration of 100 mg L−1 under the optional condition of [PS]0 = 20 mM, T = 60 °C, and unadjusted pH. \( {SO}_4^{\cdotp -} \) and HO · were confirmed using electron paramagnetic resonance (EPR) spectra during TAP process. Radical quenching study revealed that \( {SO}_4^{\cdotp -} \) was mainly responsible for MNZ degradation at an unadjusted pH. MNZ mineralization evaluation showed that the removal efficiency of total organic carbon (TOC) reached more than 97.2%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ammar HB (2016) Sono-Fenton process for metronidazole degradation in aqueous solution: effect of acoustic cavitation and peroxydisulfate anion. Ultrason Sonochem 33:164–169

    Article  CAS  Google Scholar 

  • Anipsitakis GP, Dionysiou DD (2004) Radical generation by the interaction of transition metals with common oxidants. Environ Sci Technol 38:3705–3712

    Article  CAS  Google Scholar 

  • Antoniou MG, de la Cruz AA, Dionysiou DD (2010) Degradation of microcystin-LR using sulfate radicals generated through photolysis, thermolysis and e transfer mechanisms. Appl Catal B Environ 96:290–298. https://doi.org/10.1016/j.apcatb.2010.02.013

    Article  CAS  Google Scholar 

  • Azam A, Siraji F, Amran M, Islam J, Amjad F, Hossain M (2011) In vitro interaction of metronidazole and mebendazole with copper (II) and chromium (III) in aqueous media. J Sci Res 4:173–181

    Article  Google Scholar 

  • Chen J et al (2012) Removal mechanism of antibiotic metronidazole from aquatic solutions by using nanoscale zero-valent iron particles. Chem Eng J 181-182:113–119. https://doi.org/10.1016/j.cej.2011.11.037

    Article  CAS  Google Scholar 

  • Chen J, Qian Y, Liu H, Huang T (2016) Oxidative degradation of diclofenac by thermally activated persulfate: implication for ISCO. Environ Sci Pollut Res 23:3824–3833. https://doi.org/10.1007/s11356-015-5630-0

    Article  CAS  Google Scholar 

  • Cheng W, Yang M, Xie Y, Liang B, Fang Z, Tsang EP (2013) Enhancement of mineralization of metronidazole by the electro-Fenton process with a Ce/SnO2–Sb coated titanium anode. Chem Eng J 220:214–220. https://doi.org/10.1016/j.cej.2013.01.055

    Article  CAS  Google Scholar 

  • Deng J, Shao Y, Gao N, Deng Y, Zhou S, Hu X (2013) Thermally activated persulfate (TAP) oxidation of antiepileptic drug carbamazepine in water. Chem Eng J 228:765–771

    Article  CAS  Google Scholar 

  • Fan Y, Ji Y, Kong D, Lu J, Zhou Q (2015) Kinetic and mechanistic investigations of the degradation of sulfamethazine in heat-activated persulfate oxidation process. J Hazard Mater 300:39–47. https://doi.org/10.1016/j.jhazmat.2015.06.058

    Article  CAS  Google Scholar 

  • Fang Z, Qiu X, Chen J, Qiu X (2010) Degradation of metronidazole by nanoscale zero-valent metal prepared from steel pickling waste liquor. Appl Catal B Environ 100:221–228. https://doi.org/10.1016/j.apcatb.2010.07.035

    Article  CAS  Google Scholar 

  • Fang Z, Chen J, Qiu X, Qiu X, Cheng W, Zhu L (2011) Effective removal of antibiotic metronidazole from water by nanoscale zero-valent iron particles. Desalination 268:60–67. https://doi.org/10.1016/j.desal.2010.09.051

    Article  CAS  Google Scholar 

  • Farzadkia M, Bazrafshan E, Esrafili A, Yang J-K, Shirzad-Siboni M (2015) Photocatalytic degradation of metronidazole with illuminated TiO2 nanoparticles. J Environ. Health Sci Eng 13:35

    Article  Google Scholar 

  • Furman OS, Teel AL, Watts RJ (2010) Mechanism of base activation of persulfate. Environ Sci Technol 44:6423–6428

    Article  CAS  Google Scholar 

  • Gao H, Chen J, Zhang Y, Zhou X (2016) Sulfate radicals induced degradation of triclosan in thermally activated persulfate system. Chem Eng J 306:522–530. https://doi.org/10.1016/j.cej.2016.07.080

    Article  CAS  Google Scholar 

  • Ghauch A, Tuqan AM, Kibbi N (2012) Ibuprofen removal by heated persulfate in aqueous solution: a kinetics study. Chem Eng J 197:483–492

    Article  CAS  Google Scholar 

  • Gómez MJ, Petrović M, Fernández-Alba AR, Barceló D (2006) Determination of pharmaceuticals of various therapeutic classes by solid-phase extraction and liquid chromatography–tandem mass spectrometry analysis in hospital effluent wastewaters. J Chromatogr A 1114:224–233

    Article  Google Scholar 

  • Gómez MJ, Malato O, Ferrer I, Agüera A, Fernández-Alba AR (2007) Solid-phase extraction followed by liquid chromatography–time-of-flight–mass spectrometry to evaluate pharmaceuticals in effluents. A pilot monitoring study. J Environ Monit 9:718–729

    Article  Google Scholar 

  • Gu X, Lu S, Li L, Qiu Z, Sui Q, Lin K, Luo Q (2011) Oxidation of 1,1,1-trichloroethane stimulated by thermally activated persulfate. Ind Eng Chem Res 50:11029–11036

    Article  CAS  Google Scholar 

  • House DA (1962) Kinetics and mechanism of oxidations by peroxydisulfate. Chem Rev 62:185–203

    Article  CAS  Google Scholar 

  • Hussain I, Zhang Y, Huang S (2014) Degradation of aniline with zero-valent iron as an activator of persulfate in aqueous solution. RSC Adv 4:3502–3511

    Article  CAS  Google Scholar 

  • Ingerslev F, Toräng L, Loke M-L, Halling-Sørensen B, Nyholm N (2001) Primary biodegradation of veterinary antibiotics in aerobic and anaerobic surface water simulation systems. Chemosphere 44:865–872. https://doi.org/10.1016/s0045-6535(00)00479-3

    Article  CAS  Google Scholar 

  • Ji Y, Dong C, Kong D, Lu J, Zhou Q (2015) Heat-activated persulfate oxidation of atrazine: implications for remediation of groundwater contaminated by herbicides. Chem Eng J 263:45–54

    Article  CAS  Google Scholar 

  • Kmmerer K (2001) Drugs in the environment: emission of drugs, diagnostic aids and disinfectants into wastewater by hospitals in relation to other sources—a review. Chemosphere 45:957–969

    Article  Google Scholar 

  • Kolthoff I, Miller I (1951) The chemistry of persulfate. I. The kinetics and mechanism of the decomposition of the persulfate ion in aqueous medium. J Am Chem Soc 73:3055–3059

    Article  CAS  Google Scholar 

  • Kümmerer K, Al-Ahmad A, Mersch-Sundermann V (2000) Biodegradability of some antibiotics, elimination of the genotoxicity and affection of wastewater bacteria in a simple test. Chemosphere 40:701–710

    Article  Google Scholar 

  • Lee Y-C, Lo S-L, Kuo J, Lin Y-L (2012) Persulfate oxidation of perfluorooctanoic acid under the temperatures of 20–40 °C. Chem Eng J 198:27–32

    Article  Google Scholar 

  • Liang C, Wang ZS, Bruell CJ (2007) Influence of pH on persulfate oxidation of TCE at ambient temperatures. Chemosphere 66:106–113. https://doi.org/10.1016/j.chemosphere.2006.05.026

    Article  CAS  Google Scholar 

  • Liang C, Huang C-F, Mohanty N, Kurakalva RM (2008) A rapid spectrophotometric determination of persulfate anion in ISCO. Chemosphere 73:1540–1543

    Article  CAS  Google Scholar 

  • Mahdi Ahmed M, Barbati S, Doumenq P, Chiron S (2012) Sulfate radical anion oxidation of diclofenac and sulfamethoxazole for water decontamination. Chem Eng J 197:440–447. https://doi.org/10.1016/j.cej.2012.05.040

    Article  CAS  Google Scholar 

  • McCallum JE, Madison SA, Alkan S, Depinto RL, Rojas Wahl RU (2000) Analytical studies on the oxidative degradation of the reactive textile dye Uniblue A. Environ Sci Technol 34:5157–5164

    Article  CAS  Google Scholar 

  • Mendez-Diaz JD, Prados-Joya G, Rivera-Utrilla J, Leyva-Ramos R, Sanchez-Polo M, Ferro-Garcia MA, Medellin-Castillo NA (2010) Kinetic study of the adsorption of nitroimidazole antibiotics on activated carbons in aqueous phase. J Colloid Interface Sci 345:481–490. https://doi.org/10.1016/j.jcis.2010.01.089

    Article  CAS  Google Scholar 

  • Nie M, Yang Y, Zhang Z, Yan C, Wang X, Li H, Dong W (2014) Degradation of chloramphenicol by thermally activated persulfate in aqueous solution. Chem Eng J 246:373–382. https://doi.org/10.1016/j.cej.2014.02.047

    Article  CAS  Google Scholar 

  • Olmez-Hanci T, Arslan-Alaton I, Genc B (2013) Bisphenol A treatment by the hot persulfate process: oxidation products and acute toxicity. J Hazard Mater 263:283–290

    Article  CAS  Google Scholar 

  • Padmaja S, Alfassi Z, Neta P, Huie R (1993) Rate constants for reactions of radicals in acetonitrile. In J Chem Kinet 25:193–198

    Article  CAS  Google Scholar 

  • Peyton GR (1993) The free-radical chemistry of persulfate-based total organic carbon analyzers. Mar Chem 41:91–103

    Article  CAS  Google Scholar 

  • Pignatello JJ, Oliveros E, MacKay A (2006) Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry. Crit Rev Environ Sci Technol 36:1–84

    Article  CAS  Google Scholar 

  • Rivera-Utrilla J, Prados-Joya G, Sanchez-Polo M, Ferro-Garcia MA, Bautista-Toledo I (2009) Removal of nitroimidazole antibiotics from aqueous solution by adsorption/bioadsorption on activated carbon. J Hazard Mater 170:298–305. https://doi.org/10.1016/j.jhazmat.2009.04.096

    Article  CAS  Google Scholar 

  • Rosal R et al (2010) Occurrence of emerging pollutants in urban wastewater and their removal through biological treatment followed by ozonation. Water Res 44:578–588. https://doi.org/10.1016/j.watres.2009.07.004

    Article  CAS  Google Scholar 

  • Saidi I, Soutrel I, Floner D, Fourcade F, Bellakhal N, Amrane A, Geneste F (2014) Indirect electroreduction as pretreatment to enhance biodegradability of metronidazole. J Hazard Mater 278:172–179

    Article  CAS  Google Scholar 

  • Sanchez-Polo M, Rivera-Utrilla J, Prados-Joya G, Ferro-Garcia MA, Bautista-Toledo I (2008) Removal of pharmaceutical compounds, nitroimidazoles, from waters by using the ozone/carbon system. Water Res 42:4163–4171. https://doi.org/10.1016/j.watres.2008.05.034

    Article  CAS  Google Scholar 

  • Shemer H, Kunukcu YK, Linden KG (2006) Degradation of the pharmaceutical metronidazole via UV, Fenton and photo-Fenton processes. Chemosphere 63:269–276. https://doi.org/10.1016/j.chemosphere.2005.07.029

    Article  CAS  Google Scholar 

  • Singh UC, Venkatarao K (1976) Decomposition of peroxodisulphate in aqueous alkaline solution. J Inorg and Nuclear Chem 38:541–543

    Article  CAS  Google Scholar 

  • Szente V, Baska F, Zelkó R, Süvegh K (2011) Prediction of the drug release stability of different polymeric matrix tablets containing metronidazole. J Pharm Biomed Anal 54:730–734

    Article  CAS  Google Scholar 

  • Tan C, Gao N, Deng Y, An N, Deng J (2012) Heat-activated persulfate oxidation of diuron in water. Chem Eng J 203:294–300

    Article  CAS  Google Scholar 

  • Tsitonaki A, Smets BF, Bjerg PL (2008) Effects of heat-activated persulfate oxidation on soil microorganisms.Water Res 42(4):1013–1022

  • Tsitonaki A, Petri B, Crimi M, Mosbæk H, Siegrist RL, Bjerg PL (2010) In situ chemical oxidation of contaminated soil and groundwater using persulfate: a review. Crit Rev Environ Sci Technol 40:55–91

    Article  CAS  Google Scholar 

  • Wang X, Wang L, Li J, Qiu J, Cai C, Zhang H (2014) Degradation of Acid Orange 7 by persulfate activated with zero valent iron in the presence of ultrasonic irradiation. Sep Purif Technol 122:41–46

    Article  CAS  Google Scholar 

  • Weng CH, Tsai KL (2016) Ultrasound and heat enhanced persulfate oxidation activated with Fe0 aggregate for the decolorization of C.I. Direct Red 23. Ultrason Sonochem 29:11–18. https://doi.org/10.1016/j.ultsonch.2015.08.012

    Article  CAS  Google Scholar 

  • Xiao JC, Xie LF, Zhao L, Fang SL, Lun ZR (2008) The presence of Mycoplasma hominis in isolates of Trichomonas vaginalis impacts significantly on DNA fingerprinting results. Parasitol Res 102:613–619. https://doi.org/10.1007/s00436-007-0796-0

    Article  CAS  Google Scholar 

  • Yan J, Lei M, Zhu L, Anjum MN, Zou J, Tang H (2011) Degradation of sulfamonomethoxine with Fe3O4 magnetic nanoparticles as heterogeneous activator of persulfate. J Hazard Mater 186:1398–1404. https://doi.org/10.1016/j.jhazmat.2010.12.017

    Article  CAS  Google Scholar 

  • Yan J, Zhu L, Luo Z, Huang Y, Tang H, Chen M (2013) Oxidative decomposition of organic pollutants by using persulfate with ferrous hydroxide colloids as efficient heterogeneous activator. Sep Purif Technol 106:8–14. https://doi.org/10.1016/j.seppur.2012.12.012

    Article  CAS  Google Scholar 

  • Yifei C, Shaojin C (2008) Reduction of methyl and chloro substituted nitrobenzenes in soils by zero-valent iron. J Environ Sci Manag 11:017

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Nature Science Foundation of China (Grant No. 41302184), Scientific Frontier and Interdisciplinary Research Project of Jilin University, Outstanding Youth Cultivation Plan of Jilin University, and Key Laboratory of Groundwater Resources and Environmental of Ministry of Education (Jilin University).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hejun Ren.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Responsible editor: Santiago V. Luis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, R., Li, T., Su, Y. et al. Oxidative removal of metronidazole from aqueous solution by thermally activated persulfate process: kinetics and mechanisms. Environ Sci Pollut Res 25, 2466–2475 (2018). https://doi.org/10.1007/s11356-017-0518-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-0518-9

Keywords

Navigation