Skip to main content
Log in

Biological and analytical techniques used for detection of polyaromatic hydrocarbons

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Polycyclic aromatic hydrocarbons contain two or more fused benzene rings that are considered as cosmo-pollutants ubiquitously found in the environment. The identification and monitoring of polycyclic aromatic hydrocarbons (PAHs) are of great interests for rapid and on-site detection. Therefore, many analytical and biological techniques have been proposed for the qualitative and quantitative assessments of PAHs. Non-biological analytical techniques such as infrared, Raman, and fluorescence spectroscopies are commonly exploited as non-destructive techniques while gas chromatography (GC) and high-performance liquid chromatography (HPLC) with multiple detectors are extensively employed for the separation and detection of an analyte. Even though spectroscopy and chromatography are more accurate, convenient, and feasible techniques, often, these methods are expensive and sophisticated which require high maintenance cost. On the other hand, biological approaches, i.e., immunoassay, PCR, and microarray, offer comprehensive high-throughput specificity and sensitivity for a similar analyte. Biosensor- and immunoassay-mediated detections of PAHs have opened up new avenues in terms of low cost, rapid determination, and higher sensitivity. In this review, we have discussed the strengths and limitations of biological and analytical techniques that were explored for precise evaluation and were trusted at both the legislation and research levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Acevedo F, Pizzul L, González ME, Cea M, Gianfreda L, Diez MC (2010) Degradation of polycyclic aromatic hydrocarbons by free and nanoclay-immobilized manganese peroxidase from Anthracophyllum discolor. Chemosphere 80(3):271–278

    Article  CAS  Google Scholar 

  • Alarie JP, Bowyer JR, Sepaniak MJ, Hoyt AM, Vo-Dinh T (1990) Fluorescence monitoring of a benzo [a] pyrene metabolite using a regenerable immunochemical-based fiber-optic sensor. Anal Chim Acta 236:237–244

    Article  CAS  Google Scholar 

  • Banni M, Sforzini S, Arlt VM, Barranger A, Dallas LJ, Oliveri C, Readman JW (2017) Assessing the impact of benzo [a] pyrene on marine mussels: application of a novel targeted low density microarray complementing classical biomarker responses. PLoS One 12(6):e0178460

    Article  CAS  Google Scholar 

  • Bentivegna CS, DeFelice CR, Murphy WR (2016) Excitation–emission matrix scan analysis of raw fish oil from coastal New Jersey menhaden collected before and after hurricane Sandy. Mar Pollut Bull 107(2):442–452

    Article  CAS  Google Scholar 

  • Berset JD, Ejem M, Holzer R, Lischer P (1999) Comparison of different drying, extraction and detection techniques for the determination of priority polycyclic aromatic hydrocarbons in background contaminated soil samples. Anal Chim Acta 383(3):263–275

    Article  CAS  Google Scholar 

  • Bortolato SA, Arancibia JA, Escandar GM (2008) Chemometrics-assisted excitation−emission fluorescence spectroscopy on nylon membranes. Simultaneous determination of benzo [a] pyrene and dibenz [a, h] anthracene at parts-per-trillion levels in the presence of the remaining EPA PAH priority pollutants as interferences. Anal Chem 80(21):8276–8286

    Article  CAS  Google Scholar 

  • Cann PM, Spikes HA (2005) In-contact IR spectroscopy of hydrocarbon lubricants. Tribol Lett 19(4):289–297

    Article  CAS  Google Scholar 

  • Carabajal MD, Arancibia JA, Escandar GM (2017) Excitation-emission fluorescence-kinetic data obtained by Fenton degradation. Determination of heavy-polycyclic aromatic hydrocarbons by four-way parallel factor analysis. Talanta 165:52–63

    Article  CAS  Google Scholar 

  • Cébron A, Norini MP, Beguiristain T, Leyval C (2008) Real-time PCR quantification of PAHs-ring hydroxylating dioxygenase (PAHs-RHD α) genes from gram positive and gram negative bacteria in soil and sediment samples. J Microbiol Methods 73(2):148–159

    Article  CAS  Google Scholar 

  • Cerezo MI, Linden M, Agustí S (2017) Flow cytometry detection of planktonic cells with polycyclic aromatic hydrocarbons sorbed to cell surfaces. Mar Pollut Bull 118(1):64–70

    Article  CAS  Google Scholar 

  • Chen J, Huang YW, Zhao Y (2015) Characterization of polycyclic aromatic hydrocarbons using Raman and surface-enhanced Raman spectroscopy. J Raman Spectrosc 46(1):64–69

    Article  CAS  Google Scholar 

  • Cheng CN, Lai JH, Huang MZ, Oung JN, Shiea J (2012) Analysis of polar components in crude oil by ambient mass spectrometry. In crude oil emulsions—composition stability and characterization, InTech

    Book  Google Scholar 

  • Cho JH, Lee DY, Lim WK, Shin HJ (2014) A recombinant Escherichia Coli biosensor for detecting polycyclic aromatic hydrocarbons in gas and aqueous phases. Prep Biochem Biotechnol 44(8):849–860

    Article  CAS  Google Scholar 

  • Christensen JH, Hansen AB, Mortensen J, Andersen O (2005) Characterization and matching of oil samples using fluorescence spectroscopy and parallel factor analysis. Anal Chem 77(7):2210–2217

    Article  CAS  Google Scholar 

  • Cornelissen G, Gustafsson Ö, Bucheli TD, Jonker MT, Koelmans AA, van Noort PC (2005) Extensive sorption of organic compounds to black carbon, coal, and kerogen in sediments and soils: mechanisms and consequences for distribution, bioaccumulation, and biodegradation. Environ Sci Technol 39(18):6881–6895

    Article  CAS  Google Scholar 

  • Costa JCS, Sant’Ana AC, Corio P, Temperini MLA (2006) Chemical analysis of polycyclic aromatic hydrocarbons by surface-enhanced Raman spectroscopy. Talanta 70(5):1011–1016

    Article  CAS  Google Scholar 

  • da Silva SA, Sampaio GR, da Silva Torres EAF (2017) Optimization and validation of a method using UHPLC-fluorescence for the analysis of polycyclic aromatic hydrocarbons in cold-pressed vegetable oils. Food Chem 221:809–814

    Article  CAS  Google Scholar 

  • Danyi S, Brose F, Brasseur C, Schneider YJ, Larondelle Y, Pussemier L, Scippo ML (2009) Analysis of EU priority polycyclic aromatic hydrocarbons in food supplements using high performance liquid chromatography coupled to an ultraviolet, diode array or fluorescence detector. Anal Chim Acta 633(2):293–299

    Article  CAS  Google Scholar 

  • Del Carlo M, Di Marcello M, Perugini M, Ponzielli V, Sergi M, Mascini M, Compagnone D (2008) Electrochemical DNA biosensor for polycyclic aromatic hydrocarbon detection. Microchim Acta 163(3–4):163–169

    Article  CAS  Google Scholar 

  • Díaz-Moroles NE, Garza-Ulloa HJ, Castro-Ríos R, Ramírez-Villarreal EG, Barbarín-Castillo JM, Waksman-de Torres N (2007) A comparison of the performance of two chromatographic and three extraction techniques for the analysis of PAHs in sources of drinking water. J Chromatogr Sci 45(2):57–62

    Article  Google Scholar 

  • Dijkmans T, Van Geem KM, Djokic MR, Marin GB (2014) Combined comprehensive two-dimensional gas chromatography analysis of polyaromatic hydrocarbons/polyaromatic sulfur-containing hydrocarbons (PAHs/PASH) in complex matrices. Ind Eng Chem Res 53(40):15436–15446

    Article  CAS  Google Scholar 

  • Diletti G, Scortichini G, Scarpone R, Gatti G, Torreti L, Migliorati G (2005) Isotope dilution determination of polycyclic aromatic hydrocarbons in olive pomace oil by gas chromatography–mass spectrometry. J Chromatogr A 1062(2):247–254

    Article  CAS  Google Scholar 

  • Dionex Corporation Application note 95 (1994) polycyclic aromatic hydrocarbon determination by reversed-phase high-performance liquid chromatography. Scientific, Thermo

  • Dong C, Bai X, Sheng H, Jiao L, Zhou H, Shao Z (2015) Distribution of PAHs and the PAHs-degrading bacteria in the deep-sea sediments of the high-latitude Arctic Ocean. Biogeosciences 12(7):2163–2177

    Article  CAS  Google Scholar 

  • European Commission (2002) Opinion of the scientific committee on food on the risks to human health of polycyclic aromatic hydrocarbons in food SCF/CS/CNTM/PAF/29/final,

  • European Commission. Commission Regulation (EC) No. 836/ 2011 of 19 August 2011 amending regulation (EC) no. 333/2007 laying down the methods of sampling and analysis for the official control of the levels of lead, cadmium, mercury, inorganic tin, 3- MCPD and benzo(a)pyrene in foodstuffs

  • Fähnrich KA, Pravda M, Guilbault GG (2003) Disposable amperometric immunosensor for the detection of polycyclic aromatic hydrocarbons (PAHs) using screen-printed electrodes. Biosens Bioelectron 18(1):73–82

    Article  Google Scholar 

  • Fan Z, Keum YS, Li QX, Shelver WL, Guo LH (2012) Sensitive immunoassay detection of multiple environmental chemicals on protein microarrays using DNA/dye conjugate as a fluorescent label. J Environ Monit 14(5):1345–1352

    Article  CAS  Google Scholar 

  • Fery-Forgues S, Lavabre D (1999) Are fluorescence quantum yields so tricky to measure? A demonstration using familiar stationery products. J Chem Educ 76(9):1260

    Article  CAS  Google Scholar 

  • Forbes MD (Ed.). (2010) Carbon-centered free radicals and radical cations: structure, reactivity, and dynamics (Vol. 2). John Wiley & Sons

  • Fromberg A, Højgård A, Duedahl-Olesen L (2007) Analysis of polycyclic aromatic hydrocarbons in vegetable oils combining gel permeation chromatography with solid-phase extraction clean-up. Food Addit Contam 24(7):758–767

    Article  CAS  Google Scholar 

  • García-Delgado C, Yunta F, Eymar E (2013) Methodology for polycyclic aromatic hydrocarbons extraction from either fresh or dry spent mushroom compost and quantification by high-performance liquid chromatography–photodiode array detection. Commun Soil Sci Plant Anal 44(1–4):817–825. https://doi.org/10.1080/00103624.2013.749439

  • Goulas A, Louvel B, Waterlot C (2015) Analytical method for determining polycyclic aromatic hydrocarbon pollutants using ultrafast liquid chromatography with fluorescence detection and the recent column packed with the new 5 μm Kinetex-C18 core-shell particles. Can J Chem 93(5):564–571

    Article  CAS  Google Scholar 

  • Gu X, Tian S, Zhou Q, Adkins J, Gu Z, Li X, Zheng J (2013) SERS detection of polycyclic aromatic hydrocarbons on a bowl-shaped silver cavity substrate. RSC Adv 3(48):25989–25996

    Article  CAS  Google Scholar 

  • Guerrini L, Garcia-Ramos JV, Domingo C, Sanchez-Cortes S (2009) Nanosensors based on viologen functionalized silver nanoparticles: few molecules surface-enhanced Raman spectroscopy detection of polycyclic aromatic hydrocarbons in interparticle hot spots. Anal Chem 81(4):1418–1425

    Article  CAS  Google Scholar 

  • Hassink J, Bouwman LA, Zwart KB, Brussaard L (1993) Relationships between habitable pore space, soil biota and mineralization rates in grassland soils. Soil Biol Biochem 25(1):47–55

    Article  Google Scholar 

  • Hsu CPS (1997) Infrared spectroscopy. Handbook of instrumental techniques for. Anal Chem 249

  • Hsu CS (2003) Analytical advances for hydrocarbon research. Springer

  • Izawa MRM, Applin DM, Norman L, Cloutis EA (2014) Reflectance spectroscopy (350–2500nm) of solid-state polycyclic aromatic hydrocarbons (PAHs). Icarus 237:159–181

    Article  CAS  Google Scholar 

  • Jung KH, Kim JK, Noh JH, Eun JW, Bae HJ, Kim MG, Park WS (2013) Characteristic molecular signature for the early detection and prediction of polycyclic aromatic hydrocarbons in rat liver. Toxicol Lett 216(1):1–8

    Article  CAS  Google Scholar 

  • Kacmaz S, Zelinkova Z, Wenzl T (2016) Rapid and sensitive method for the determination of four EU marker polycyclic aromatic hydrocarbons in cereal-based foods using isotope-dilution GC/MS. Food Addit Contam: Part A 33(4):631–638

    CAS  Google Scholar 

  • Kim D, Kumfer BM, Anastasio C, Kennedy IM, Young TM (2009) Environmental aging of polycyclic aromatic hydrocarbons on soot and its effect on source identification. Chemosphere 76(8):1075–1081

    Article  CAS  Google Scholar 

  • Kumar S, Negi S (2015) Transformation of waste cooking oil into C-18 fatty acids using a novel lipase produced by Penicillium chrysogenum through solid state fermentation. 3. Biotech 5(5):847–851

    Google Scholar 

  • Kumar S, Mathur A, Singh V, Nandy S, Khare SK, Negi S (2012) Bioremediation of waste cooking oil using a novel lipase produced by Penicillium chrysogenum SNP5 grown in solid medium containing waste grease. Bioresour Technol 120:300–304

    Article  CAS  Google Scholar 

  • Kumari R, Chaturvedi P, Ansari NG, Murthy RC, Patel DK (2012) Optimization and validation of an extraction method for the analysis of polycyclic aromatic hydrocarbons in chocolate candies. J Food Sci 77(1)

  • Lamani X, Horst S, Zimmermann T, Schmidt TC (2015) Determination of aromatic amines in human urine using comprehensive multi-dimensional gas chromatography mass spectrometry (GCxGC-qMS). Anal Bioanal Chem 407(1):241–252

    Article  CAS  Google Scholar 

  • Liang Y, Li G, Van Nostrand JD, He Z, Wu L, Deng Y, Zhou J (2009a) Microarray-based analysis of microbial functional diversity along an oil contamination gradient in oil field. FEMS Microbiol Ecol 70(2):324–333

    Article  CAS  Google Scholar 

  • Liang Y, Van Nostrand JD, Wang J, Zhang X, Zhou J, Li G (2009b) Microarray-based functional gene analysis of soil microbial communities during ozonation and biodegradation of crude oil. Chemosphere 75(2):193–199

    Article  CAS  Google Scholar 

  • Lin YY, Liu G, Wai CM, Lin Y (2007) Magnetic beads-based bioelectrochemical immunoassay of polycyclic aromatic hydrocarbons. Electrochem Commun 9(7):1547–1552

    Article  CAS  Google Scholar 

  • Liu Y, Su G, Zhang B, Jiang G, Yan B (2011) Nanoparticle-based strategies for detection and remediation of environmental pollutants. Analyst 136(5):872–877

    Article  CAS  Google Scholar 

  • Lu W, Li Y, Li R, Shuang S, Dong C, Cai Z (2016) Facile synthesis of N-doped carbon dots as a new matrix for detection of hydroxy-polycyclic aromatic hydrocarbons by negative-ion matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. ACS Appl Mater Interfaces 8(20):12976–12984

    Article  CAS  Google Scholar 

  • Ma Y, Cai C, Yang H, Luo L, Chen X (2014) The amplified resonance light scattering signal detection of DNA hybridization using polycyclic aromatic hydrocarbons as a probe. Spectrosc Lett 47(3):184–191

    Article  CAS  Google Scholar 

  • Mahmoudpour M, Mohtadinia J, Mousavi MM, Ansarin M, Nemati M (2017) Application of the microwave-assisted extraction and dispersive liquid–liquid microextraction for the analysis of PAHs in smoked rice. Food Anal Methods 10(1):277–286

    Article  Google Scholar 

  • Malawska M, Wiołkomirski B (2001) An analysis of soil and plant (Taraxacum officinale) contamination with heavy metals and polycyclic aromatic hydrocarbons (PAHs) in the area of the railway junction Iława Główna, Poland. Water Air Soil Pollut 127(1):339–349

    Article  CAS  Google Scholar 

  • Matschulat D, Deng A, Niessner R, Knopp D (2005) Development of a highly sensitive monoclonal antibody based ELISA for detection of benzo [a] pyrene in potable water. Analyst 130(7):1078–1086

    Article  CAS  Google Scholar 

  • Meimaridou A, Haasnoot W, Noteboom L, Mintzas D, Pulkrabova J, Hajslová J, Nielen MW (2010) Color encoded microbeads-based flow cytometric immunoassay for polycyclic aromatic hydrocarbons in food. Anal Chim Acta 672(1):9–14

    Article  CAS  Google Scholar 

  • Meng XY, Li YS, Zhou Y, Sun Y, Qiao B, Si CC et al (2016) An improved RT-IPCR for detection of pyrene and related polycyclic aromatic hydrocarbons. Biosens Bioelectron 78:194–199

  • Meng XY, Li YS, Zhou Y, Zhang YY, Qiao B, Sun Y et al (2015) Real-time immuno-PCR for ultrasensitive detection of pyrene and other homologous PAHs. Biosens Bioelectron 70:42–47

  • Meyer S, Moser R, Neef A, Stahl U, Kämpfer P (1999) Differential detection of key enzymes of polyaromatic-hydrocarbon-degrading bacteria using PCR and gene probes. Microbiology 145(7):1731–1741

    Article  CAS  Google Scholar 

  • Miège C, Dugay J, Hennion MC (1998) Optimization and validation of solvent and supercritical-fluid extractions for the trace-determination of polycyclic aromatic hydrocarbons in sewage sludges by liquid chromatography coupled to diode-array and fluorescence detection. J Chromatogr A 823(1):219–230

    Article  Google Scholar 

  • Moissette A, Marquis S, Gener I, Brémard C (2002) Sorption of anthracene, phenanthrene and 9, 10-dimethylanthracene on activated acid HZSM-5 zeolite. Effect of sorbate size on spontaneous ionization yield. Phys Chem Chem Phys 4(22):5690–5696

    Article  CAS  Google Scholar 

  • Morris BE, Gissibl A, Kümmel S, Richnow HH, Boll M (2014) A PCR-based assay for the detection of anaerobic naphthalene degradation. FEMS Microbiol Lett 354(1):55–59

    Article  CAS  Google Scholar 

  • Moser R, Stahl U (2001) Insights into the genetic diversity of initial dioxygenases from PAHs-degrading bacteria. Appl Microbiol Biotechnol 55(5):609–618

    Article  CAS  Google Scholar 

  • Moussawi RN, Patra D (2016) Nanoparticle self-assembled grain like curcumin conjugated ZnO: curcumin conjugation enhances removal of perylene, fluoranthene, and chrysene by ZnO. Sci Rep 6

  • Mueller-Spitz SR, Crawford KD (2014) Silver nanoparticle inhibition of polycyclic aromatic hydrocarbons degradation by mycobacterium species RJGII-135. Lett Appl Microbiol 58(4):330–337

    Article  CAS  Google Scholar 

  • Nam K, Alexander M (1998) Role of nanoporosity and hydrophobicity in sequestration and bioavailability: tests with model solids. Environ Sci Technol 32(1):71–74

    Article  CAS  Google Scholar 

  • Nassar HF, Tang N, Kameda T, Toriba A, Khoder MI, Hayakawa K (2011) Atmospheric concentrations of polycyclic aromatic hydrocarbons and selected nitrated derivatives in greater Cairo, Egypt. Atmos Environ 45(39):7352–7359

    CAS  Google Scholar 

  • Negi S, Kumar S (2012) Evaluation of techniques used for parameters estimation: an application to bioremediation of grease waste. Appl Biochem Biotechnol 167(6):1613–1621

    Article  CAS  Google Scholar 

  • Paitan Y, Biran I, Shechter N, Biran D, Rishpon J, Ron EZ (2004) Monitoring aromatic hydrocarbons by whole cell electrochemical biosensors. Anal Biochem 335(2):175–183

    Article  CAS  Google Scholar 

  • Pakarinen JM, Teräväinen MJ, Pirskanen A, Wickström K, Vainiotalo P (2007) A positive-ion electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry study of Russian and North Sea crude oils and their six distillation fractions. Energy Fuel 21(6):3369–3374

    Article  CAS  Google Scholar 

  • Paszkiewicz M, Caban M, Bielicka-Giełdoń A, Stepnowski P (2017) Optimization of a procedure for the simultaneous extraction of polycyclic aromatic hydrocarbons and metal ions by functionalized and non-functionalized carbon nanotubes as effective sorbents. Talanta 165:405–411

    Article  CAS  Google Scholar 

  • Pejcic B, Boyd L, Myers M, Ross A, Raichlin Y, Katzir A, Mizaikoff B (2013) Direct quantification of aromatic hydrocarbons in geochemical fluids with a mid-infrared attenuated total reflection sensor. Org Geochem 55:63–71

    Article  CAS  Google Scholar 

  • Perera FP, Rauh V, Whyatt RM, Tsai WY, Tang D, Diaz D, Kinney P (2006) Effect of prenatal exposure to airborne polycyclic aromatic hydrocarbons on neurodevelopment in the first 3 years of life among inner-city children. Environ Health Perspect:1287–1292

  • Piskonen R, Itävaara M (2004) Evaluation of chemical pretreatment of contaminated soil for improved PAHs bioremediation. Appl Microbiol Biotechnol 65(5):627–634

    Article  CAS  Google Scholar 

  • Qin J, Li X, Feng F, Pan Q, Bai Y, Zhao J (2017) Room temperature phosphorescence of five PAHs in a synergistic mesoporous silica nanoparticle-deoxycholate substrate. Spectrochim Acta A Mol Biomol Spectrosc 179:233–241

    Article  CAS  Google Scholar 

  • Raters M, Matissek R (2014) Quantitation of polycyclic aromatic hydrocarbons (PAH4) in cocoa and chocolate samples by an HPLC-FD method. J Agric Food Chem 62(44):10666–10671

    Article  CAS  Google Scholar 

  • Ratola N, Herbert P, Alves A (2012) Microwave-assisted headspace solid-phase microextraction to quantify polycyclic aromatic hydrocarbons in pine trees. Anal Bioanal Chem 403(6):1761–1769

    Article  CAS  Google Scholar 

  • Ré N, Kataoka VMF, Cardoso CAL, Alcantara GB, de Souza JBG (2015) Polycyclic aromatic hydrocarbon concentrations in gas and particle phases and source determination in atmospheric samples from a semiurban area of Dourados, Brazil. Arch Environ Contam Toxicol 69(1):69–80

    Article  CAS  Google Scholar 

  • Rein A, Adam IK, Miltner A, Brumme K, Kästner M, Trapp S (2016) Impact of bacterial activity on turnover of insoluble hydrophobic substrates (phenanthrene and pyrene)—model simulations for prediction of bioremediation success. J Hazard Mater 306:105–114

    Article  CAS  Google Scholar 

  • Rhee SK, Liu X, Wu L, Chong SC, Wan X, Zhou J (2004) Detection of genes involved in biodegradation and biotransformation in microbial communities by using 50-mer oligonucleotide microarrays. Appl Environ Microbiol 70(7):4303–4317

    Article  CAS  Google Scholar 

  • Rivera-Figueroa AM, Ramazan KA, Finlayson-Pitts BJ (2004) Fluorescence, absorption, and excitation spectra of polycyclic aromatic hydrocarbons as a tool for quantitative analysis. J Chem Educ 81(2):242

    Article  CAS  Google Scholar 

  • Rose M, White S, Macarthur R, Petch RG, Holland J, Damant AP (2007) Single-laboratory validation of a GC/MS method for the determination of 27 polycyclic aromatic hydrocarbons (PAHs) in oils and fats. Food Addit Contam 24(6):635–651

    Article  CAS  Google Scholar 

  • Rozentale I, Zacs D, Perkons I, Bartkevics V (2017) A comparison of gas chromatography coupled to tandem quadrupole mass spectrometry and high-resolution sector mass spectrometry for sensitive determination of polycyclic aromatic hydrocarbons (PAHs) in cereal products. Food Chem 221:1291–1297

    Article  CAS  Google Scholar 

  • Salahi A, Noshadi I, Badrnezhad R, Kanjilal B, Mohammadi T (2013) Nano-porous membrane process for oily wastewater treatment: optimization using response surface methodology. J Environ Chem Eng 1(3):218–225

    Article  CAS  Google Scholar 

  • Saleh A, Yamini Y, Faraji M, Rezaee M, Ghambarian M (2009) Ultrasound-assisted emulsification microextraction method based on applying low density organic solvents followed by gas chromatography analysis for the determination of polycyclic aromatic hydrocarbons in water samples. J Chromatogr A 1216(39):6673–6679

    Article  CAS  Google Scholar 

  • Simon R, Palme S, Anklam E (2006) Single-laboratory validation of a gas chromatography–mass spectrometry method for quantitation of 15 European priority polycyclic aromatic hydrocarbons in spiked smoke flavourings. J Chromatogr A 1103(2):307–313

    Article  CAS  Google Scholar 

  • Spier CR, Vadas GG, Kaattari SL, Unger MA (2011) Near real-time, on-site, quantitative analysis of PAHs in the aqueous environment using an antibody-based biosensor. Environ Toxicol Chem 30(7):1557–1563

    Article  CAS  Google Scholar 

  • Steffens J, Landulfo E, Courrol LC, Guardani R (2011) Application of fluorescence to the study of crude petroleum. J Fluoresc 21(3):859–864

    Article  CAS  Google Scholar 

  • Sugumaran V, Biswas H, Yadav A, Christopher J, Kagdiyal V, Patel MB, Basu B (2015) Molecular-level characterization of refinery streams by high-resolution mass spectrometry. Energy Fuel 29(5):2940–2950

    Article  CAS  Google Scholar 

  • Sui H, Li L, Zhu X, Chen D, Wu G (2016) Modeling the adsorption of PAHs mixture in silica nanopores by molecular dynamic simulation combined with machine learning. Chemosphere 144:1950–1959

    Article  CAS  Google Scholar 

  • Suma Y, Lim H, Kwean OS, Cho S, Yang J, Kim Y, Kim HS (2016) Enzymatic degradation of aromatic hydrocarbon intermediates using a recombinant dioxygenase immobilized onto surfactant-activated carbon nanotube. Bioresour Technol 210:117–122

    Article  CAS  Google Scholar 

  • Sun, Y., Zhao, X., Zhang, D., Ding, A., Chen, C., Huang, W. E., & Zhang, H. (2017). New naphthalene whole-cell bioreporter for measuring and assessing naphthalene in polycyclic aromatic hydrocarbons contaminated site. Chemosphere

    Google Scholar 

  • Tarpani L, Vocci A, Selvaggi R, Pellegrino R, Ruspolini F, Taglieri L, Latterini L (2011) Solid-phase analysis of polycyclic aromatic hydrocarbons by Fluorimetric methods. Appl Spectrosc 65(12):1342–1347

    Article  CAS  Google Scholar 

  • Thomas F, Lorgeoux C, Faure P, Billet D, Cébron A (2016) Isolation and substrate screening of polycyclic aromatic hydrocarbon degrading bacteria from soil with long history of contamination. Int Biodeterior Biodegrad 107:1–9

    Article  CAS  Google Scholar 

  • Tian M, Qu J, Han X, Zhang M, Ding C, Ding J et al (2013) Microarray-based identification of differentially expressed genes in intracellular Brucella abortus within RAW264 7 cells. Plos One 8(8):e67014

    Article  CAS  Google Scholar 

  • Tizzard AC, Lloyd-Jones G (2007) Bacterial oxygenases: in vivo enzyme biosensors for organic pollutants. Biosens Bioelectron 22(11):2400–2407

    Article  CAS  Google Scholar 

  • Tommasini M, Lucotti A, Alfè M, Ciajolo A, Zerbi G (2016) Fingerprints of polycyclic aromatic hydrocarbons (PAHs) in infrared absorption spectroscopy. Spectrochim Acta A Mol Biomol Spectrosc 152:134–148

    Article  CAS  Google Scholar 

  • Tungittiplakorn W, Cohen C, Lion LW (2005) Engineered polymeric nanoparticles for bioremediation of hydrophobic contaminants. Environ Sci Technol 39(5):1354–1358

    Article  CAS  Google Scholar 

  • Vásquez V, Báez ME, Bravo M, Fuentes E (2013) Determination of heavy polycyclic aromatic hydrocarbons of concern in edible oils via excitation–emission fluorescence spectroscopy on nylon membranes coupled to unfolded partial least-squares/residual bilinearization. Anal Bioanal Chem 405(23):7497–7507

    Article  CAS  Google Scholar 

  • Veyrand B, Brosseaud A, Sarcher L, Varlet V, Monteau F, Marchand P, Le Bizec B (2007) Innovative method for determination of 19 polycyclic aromatic hydrocarbons in food and oil samples using gas chromatography coupled to tandem mass spectrometry based on an isotope dilution approach. J Chromatogr A 1149(2):333–344

    Article  CAS  Google Scholar 

  • Wang P (2006) Nanoscale biocatalyst systems. Curr Opin Biotechnol 17(6):574–579

    Article  CAS  Google Scholar 

  • Wang JH, Guo C (2010) Ultrasonication extraction and gel permeation chromatography clean-up for the determination of polycyclic aromatic hydrocarbons in edible oil by an isotope dilution gas chromatography–mass spectrometry. J Chromatogr A 1217(28):4732–4737

    Article  CAS  Google Scholar 

  • Wang RF, Luneau A, Cao WW, Cerniglia CE (1995) PCR detection of polycyclic aromatic hydrocarbon-degrading mycobacteria. Environ Sci Technol 30(1):307–311

    Article  Google Scholar 

  • Wei MY, Wen SD, Yang XQ, Guo LH (2009) Development of redox-labeled electrochemical immunoassay for polycyclic aromatic hydrocarbons with controlled surface modification and catalytic voltammetric detection. Biosens Bioelectron 24(9):2909–2914

    Article  CAS  Google Scholar 

  • Whyte LG, Bourbonniere L, Greer CW (1997) Biodegradation of petroleum hydrocarbons by psychrotrophic pseudomonas strains possessing both alkane (alk) and naphthalene (nah) catabolic pathways. Appl Environ Microbiol 63(9):3719–3723

    CAS  Google Scholar 

  • Yang L, Watts DJ (2005) Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles. Toxicol Lett 158(2):122–132

    Article  CAS  Google Scholar 

  • Yang L, Chen B, Luo S, Li J, Liu R, Cai Q (2010) Sensitive detection of polycyclic aromatic hydrocarbons using CdTe quantum dot-modified TiO2 nanotube array through fluorescence resonance energy transfer. Environ Sci Technol 44(20):7884–7889

    Article  CAS  Google Scholar 

  • Yang R, Zhao N, Xiao X, Yu S, Liu J, Liu W (2016) Determination of polycyclic aromatic hydrocarbons by four-way parallel factor analysis in presence of humic acid. Spectrochim Acta A Mol Biomol Spectrosc 152:384–390

    Article  CAS  Google Scholar 

  • Ye QY, Zhuang HS, Zhou C (2009) Detection of trace anthracene in soil samples with real-time fluorescence quantitative immuno-PCR using a molecular beacon probe. Environ Toxicol Pharmacol 28(3):386–391

    Article  CAS  Google Scholar 

  • Young CR, Menegazzo N, Riley AE, Brons CH, DiSanzo FP, Givens JL, Mizaikoff B (2011) Infrared hollow waveguide sensors for simultaneous gas phase detection of benzene, toluene, and xylenes in field environments. Anal Chem 83(16):6141–6147

    Article  CAS  Google Scholar 

  • Zachara A, Gałkowska D, Juszczak L (2017) Method validation and determination of polycyclic aromatic hydrocarbons in vegetable oils by HPLC-FLD. Food Anal Methods 10(4):1078–1086

    Article  Google Scholar 

  • Zhang L, Li P, Gong Z, Li X (2008) Photocatalytic degradation of polycyclic aromatic hydrocarbons on soil surfaces using TiO 2 under UV light. J Hazard Mater 158(2):478–484

    Article  CAS  Google Scholar 

  • Zhang X, Hou H, Xiong W, & Hu Q (2015) Development of a method to detect three monohydroxylated polycyclic aromatic hydrocarbons in human urine by liquid chromatographic tandem mass spectrometry J Anal Methods Chem, 2015

  • Zhao B, Zhang S, Zhou Y, He D, Li Y, Ren M, Fang J (2015) Characterization and quantification of PAH atmospheric pollution from a large petrochemical complex in Guangzhou: GC–MS/MS analysis. Microchem J 119:140–144

    Article  CAS  Google Scholar 

  • Zhao Q, Wei F, Luo YB, Ding J, Xiao N, Feng YQ (2011) Rapid magnetic solid-phase extraction based on magnetic multiwalled carbon nanotubes for the determination of polycyclic aromatic hydrocarbons in edible oils. J Agric Food Chem 59(24):12794–12800

    Article  CAS  Google Scholar 

  • Zhou L, Geng J, Liu B (2013) Graphene quantum dots from polycyclic aromatic hydrocarbon for bioimaging and sensing of Fe3+ and hydrogen peroxide. Part Part Syst Charact 30(12):1086–1092

    Article  CAS  Google Scholar 

Download references

Funding

The author gratefully acknowledges the financial support from the Council for Scientific and Industrial Research (CSIR), New Delhi, in the form of fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunil Kumar.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Negi, S. & Maiti, P. Biological and analytical techniques used for detection of polyaromatic hydrocarbons. Environ Sci Pollut Res 24, 25810–25827 (2017). https://doi.org/10.1007/s11356-017-0415-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-0415-2

Keywords

Navigation