Skip to main content

Advertisement

Log in

Evaluation of chemical pretreatment of contaminated soil for improved PAH bioremediation

  • Environmental Biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The efficiency of several chemical treatments as potential enhancers of the biodegradation of polycyclic aromatic hydrocarbons (PAHs) in contaminated soil was evaluated by analyzing the mineralization of 14C-labeled phenanthrene, pyrene, and benzo(a)pyrene. The effect of nonionic surfactants with Fenton oxidation and combinations of surfactants with the Fenton oxidation was evaluated in a microtiter plate assay. The surfactants selected for the study were Tween 80, Brij 35, Tergitol NP-10, and Triton X-100. The addition of Fenton’s reagent significantly enhanced the mineralization of pyrene at the two concentrations studied: 2.8 M H2O2 with 0.1 M FeSO4 and 0.7 M H2O2 with 0.025 M FeSO4. Phenanthrene mineralization was also positively induced by the Fenton treatments. However, none of the treatments had a significant effect on benzo(a)pyrene mineralization. Surfactant additions at concentrations of 20% and 80% of the aqueous critical micelle concentration did not significantly affect the mineralization rates. When surfactant addition was combined with the Fenton oxidation, reduced mineralization rates were obtained when compared with mineralization after Fenton’s treatment alone. The results indicate that the addition of Fenton’s reagent may enhance the mineralization of PAHs in contaminated soil, whereas the addition of surfactants has no significant beneficial effect. The efficiency of the Fenton oxidation may decrease when surfactants are added simultaneously with Fenton’s reagent to contaminated soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alexander M (1999) Biodegradation and bioremediation, 2nd edn. Academic, San Diego, p 453

    Google Scholar 

  • Allen CRC, Boyd DR, Hempenstall F, Larkin MJ, Sharma D (1999) Contrasting effects of a nonionic surfactant on the biotransformation of polycyclic aromatic hydrocarbons to cis-dihydrodiols by soil bacteria. Appl Environ Microbiol 65:1335–1339

    CAS  PubMed  Google Scholar 

  • Aronstein BN, Calvillo YM, Alexander M (1991) Effect of surfactants at low concentrations on the desorption and biodegradation of sorbed aromatic compounds in soil. Environ Sci Technol 25:1728–1731

    CAS  Google Scholar 

  • Boopathy R (2002) Effect of food-grade surfactant on bioremediation of explosives-contaminated soil. J Hazard Mater 2794:1–12

    Google Scholar 

  • Brown DG, Knightes CD, Peters CA (1999) Risk assessment for polycyclic aromatic hydrocarbon NAPLs using component fractions. Environ Sci Technol 33:4357–4363

    Article  CAS  Google Scholar 

  • Büyüksönmez F, Hess TF, Crawford RL, Watts RJ (1998) Toxic effects of modified Fenton reaction on Xanthobacter flavus FB71. Appl Environ Microbiol 64:3759–3764

    PubMed  Google Scholar 

  • Campion LLE, Giannotti C, Ouazzani J (1999) Photocatalytic degradation of 5-nitro-1,2,4-triazol-3-one NTO in aqueous suspension of TiO2. Comparison with Fenton oxidation. Chemosphere 38:1561–1570

    Article  PubMed  Google Scholar 

  • Cerniglia CE (1992) Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation 3:351–368

    CAS  Google Scholar 

  • Chen P, Pickard MA, Gray GR (2000) Surfactant inhibition of bacterial growth on solid anthracene. Biodegradation 11:341–347

    Article  CAS  PubMed  Google Scholar 

  • Collins JF, Brown JP, Alexeeff GV, Salmon AG (1998) Potency equivalency factors for some polycyclic aromatic hydrocarbons and polycyclic aromatic hydrocarbon derivatives. Regul Toxicol Pharmacol 28:45–54

    Article  CAS  PubMed  Google Scholar 

  • Cort TL, Bielefeldt AR (2002) A kinetic model for surfactant inhibition of pentachlorophenol biodegradation. Biotechnol Bioeng 78:606–616

    Article  CAS  PubMed  Google Scholar 

  • Cort TL, Song MS, Bielfeldt AR (2002) Nonionic surfactant effects on pentachlorophenol biodegradation. Water Res 36:1253–1261

    Article  CAS  PubMed  Google Scholar 

  • Deschenes L, Lafrance P, Villeneuve JP, Samson R (1996) Adding sodium dodecyl sulfate and Pseudomonas aeruginosa UG2 biosurfactants inhibits polycyclic aromatic hydrocarbon biodegradation in a weathered creosote-contaminated soil. Appl Microbiol Biotechnol 46:638–646

    Article  CAS  PubMed  Google Scholar 

  • Foster J (1995) Determination of soil pH. In: Alef K, Nannipieri P (eds) Methods in applied soil microbiology and biochemistry. Academic, London, p 55

    Google Scholar 

  • Grosser RJ, Warshawsky D, Vestal JR (1991) Indigenous and enhanced mineralization of pyrene, benzo[a]pyrene, and carbazole in soils. Appl Environ Microbiol 57:3462–3469

    CAS  PubMed  Google Scholar 

  • Herman DC, Zhang Y, Miller RM (1997) Rhamnolipid (biosurfactant) effects on cell aggregation and biodegradation of residual hexadecane under saturated flow conditions. Appl Environ Microbiol 63:3622–3627

    CAS  PubMed  Google Scholar 

  • Izawa S, Inoue Y, Kimura A (1996) Importance of catalase in adaptive response to hydrogen peroxide: analysis of acatalasaemic Saccharomyces cerevisiae. Biochem J 320:61–67

    CAS  PubMed  Google Scholar 

  • Kanaly RA, Harayama S (2000) Biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons by bacteria. J Bacteriol 182:2059–2067

    Article  CAS  PubMed  Google Scholar 

  • Kao CM, Wu MJ (2000) Enhanced TCDD degradation by Fenton’s reagent peroxidation. J Hazard Mater B74:197–211

    Article  Google Scholar 

  • Karstensen KH (1996) NT technical report 329: nordic guidelines for chemical analysis of contaminated soil samples. Nordtest, Oslo, p 159

    Google Scholar 

  • Kästner M, Streibich S, Beyer M, Richnow HH, Fritsche W (1999) Formation of bound residues during microbial degradation of [14C]anthracene in soil. Appl Environ Microbiol 65:1834–1842

    PubMed  Google Scholar 

  • Kim IS, Park JS, Kim KW (2001) Enhanced biodegradation of polycyclic aromatic hydrocarbons using nonionic surfactants in soil slurry. Appl Geochem 16:1419–1428

    Article  CAS  Google Scholar 

  • Laha SRG, Luthy RG (1991) Inhibition of phenanthrene mineralization by nonionic surfactants in soil–water systems. Environ Sci Technol 25:1920–1930

    CAS  Google Scholar 

  • Laha S, Luthy RG (1992) Effects of nonionic surfactants on the solubilization and mineralization of phenanthrene in soil–water systems. Biotechnol Bioeng 40:1367–1380

    CAS  Google Scholar 

  • Lee BD, Hosomi M (2000) A hybrid Fenton oxidation—microbial treatment for soil highly contaminated with benz(a)anthracene. Chemosphere 43:1127–1132

    Article  Google Scholar 

  • Lee BD, Hosomi M (2001) Fenton oxidation of ethanol-washed distillation-concentrated benzo(a)pyrene: reaction product identification and biodegradability. Water Res 35:2314–2319

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Jacobson AM, Luthy RG (1995) Biodegradation of naphthalene in aqueous nonionic surfactant system. Appl Environ Microbiol 61:145–151

    CAS  PubMed  Google Scholar 

  • Madsen T, Kristensen P (1997) Effects of bacterial inoculation and nonionic surfactants on degradation of polycyclic aromatic hydrocarbons in soil. Environ Toxicol Chem 16:631–637

    CAS  Google Scholar 

  • Martens DA, Frankenberg WT Jr (1995) Enhanced degradation of polycyclic aromatic hydrocarbons in soil treated with an advanced oxidative process—Fenton’s reagent. J Soil Contam 4:1–16

    Google Scholar 

  • Nadarajah N, Van Hamme J, Pannu J, Singh A, Ward O (2002) Enhanced transformation of polycyclic aromatic hydrocarbons using a combined Fenton’s reagent, microbial treatment and surfactants. Appl Microbiol Biotechnol 59:540–544

    Article  CAS  PubMed  Google Scholar 

  • Nam K, Rodriguez W, Kukor JJ (2001) Enhanced degradation of polycyclic aromatic hydrocarbons by biodegradation combined with a modified Fenton oxidation. Chemosphere 45:11–20

    Article  CAS  PubMed  Google Scholar 

  • Nisbet ICT, LaGoy PK (1992) Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs). Regul Toxicol Pharmacol 16:290–300

    CAS  PubMed  Google Scholar 

  • Peters CA, Knightes CD, Braun DG (1999) Long-term composition dynamics of PAH-containing NAPLs and implications for risk assessment. Environ Sci Technol 33:4499–4507

    Article  CAS  Google Scholar 

  • Rahman KSM, Banat IM, Thahira J, Thayumanavan T, Lakshmanaperumalsamy P (2002) Bioremediation of gasoline contaminated soil by a bacterial consortium amended with poultry litter, coir pith and rhamnolipid biosurfactant. Bioresour Technol 81:25–32

    Article  CAS  PubMed  Google Scholar 

  • Rojas-Avelizapa NG, Rodriguez-Vazquez R, Saval-Bohorquez S, Alvarez PJJ (2000) Effect of C/N/P ratio and nonionic surfactants on polychlorinated biphenyl degradation. World J Microbiol Biotechnol 16:319–324

    Article  CAS  Google Scholar 

  • Safe S, Connor K, Ramamoorthy K, Gaido K, Maness S (1997) Human exposure to endocrine-active chemicals: hazard assessment problem. Regul Toxicol Pharmacol 26:52–58

    Article  CAS  Google Scholar 

  • Stelmack PL, Gray MR, Pickard MA (1999) Bacterial adhesion to soil contaminants in the presence of surfactants. Appl Environ Microbiol 65:163–168

    CAS  PubMed  Google Scholar 

  • Volkering F, Breure AM, Andel JG van, Rulkens WH (1995) Influence of nonionic surfactants on bioavailability and biodegradation of polycyclic aromatic hydrocarbons. Appl Environ Microbiol 61:1699–1705

    CAS  Google Scholar 

  • Volkering F, Breure AM, Rulkens WH (1998) Microbial aspects of surfactant use for biological soil remediation. Biodegradation 8:401–417

    Article  Google Scholar 

  • Watts RJ, Haller DR, Jones AP, Teel AL (2000) A foundation for the risk-based treatments of gasoline-contaminated soils using modified Fenton’s reactions. J Hazard Mater B76:73–89

    Article  Google Scholar 

Download references

Acknowledgements

Anu Kapanen, MSc (VTT Biotechnology, Espoo, Finland) is thanked for the introduction to the microtiter plate analysis. Satu H. Järvinen, MSc (HKR, Helsinki, Finland) is thanked for supplying the soil samples and Elena Zaitzewa, MSc (Juve Group, Rovaniemi, Finland) for PAH analysis. Funding for this research was obtained from the Neste Foundation, Finland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reetta Piskonen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Piskonen, R., Itävaara, M. Evaluation of chemical pretreatment of contaminated soil for improved PAH bioremediation. Appl Microbiol Biotechnol 65, 627–634 (2004). https://doi.org/10.1007/s00253-004-1679-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-004-1679-2

Keywords

Navigation