Skip to main content

Advertisement

Log in

Photocatalytic reduction of Cr(VI) by char/TiO2 composite photocatalyst: optimization and modeling using the response surface methodology (RSM)

  • Advances and trends in Advanced Oxidation processes
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The photocatalytic reduction of Cr(VI) using pyrolytic char/TiO2 (PC/TiO2) composite catalyst under simulated solar irradiation was studied. Response surface methodology (RSM) and experimental design were used for modeling the removal kinetics and for the optimization of operational parameters. RSM was developed by considering a central composite design with four input variable, i.e. catalyst concentration, initial concentration of Cr(VI), pH, and % (v/v) methanol concentration for assessing individual and interactive effects. A quadratic model was established as a functional relationship between four independent variables and the removal efficiency of Cr(VI). It was found that all selected variables have significant effect on Cr(VI) removal efficiency; however, the pH, the % concentration of methanol, and their interaction exhibited the major effects. Within the studied experimental ranges, the optimum conditions for maximum Cr(VI) removal efficiency (72.1 %) after 60 min of photocatalytic treatment were: catalyst concentration 55 mg L−1, Cr(VI) concentration 20 mg L−1, pH 4, and 5 % (v/v) methanol concentration. Under optimum conditions, Cr(VI) reductive removal followed pseudo-first-order kinetics, and nearly complete removal took place within 90 min. The results revealed the feasibility and the effectiveness of PC/TiO2 as photocatalyst in reduction reactions due to their ability of e–h+ pair separation increasing the transfer of the photogenerated e to the catalyst’s surface and thus the reduction of Cr(VI).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Antonopoulou M, Konstantinou I (2013) Optimization and modeling of the photocatalytic degradation of the insect repellent DEET in aqueous TiO2 suspensions. Clean Soil Air Water 41(6):593–600

    Article  CAS  Google Scholar 

  • Antonopoulou M, Konstantinou I (2015) Photocatalytic degradation of pentachlorophenol by visible light Ν-F-TiO2 in the presence of oxalate ions: optimization, modeling and scavenging studies. Environ Sci Pollut Res 22:9438–9448

    Article  CAS  Google Scholar 

  • Antonopoulou M, Giannakas A, Konstantinou I (2012) Simultaneous photocatalytic reduction of Cr(VI) and oxidation of benzoic acid in aqueous N-F-co-doped TiO2 suspensions: optimization and modeling using the response surface methodology. Int J Photoenergy. doi:10.1155/2012/520123

    Google Scholar 

  • Barrera-Díaz CE, Lugo-Lugo V, Bilyeu B (2012) A review of chemical, electrochemical and biological methods for aqueous Cr(VI) reduction. J Hazard Mater 223–224:1–12

    Article  Google Scholar 

  • Chen SF, Cao GY (2005) Study on the photocatalytic reduction of dichromate and photocatalytic oxidation of dichlorvos. Chemosphere 60:1308–1315

    Article  CAS  Google Scholar 

  • Cheng Q, Wang C, Doudrick K, Chana CK (2015) Hexavalent chromium removal using metal oxide photocatalysts. Appl Catal B Environ 176–177:740–748

    Article  Google Scholar 

  • Chong MN, Jin B, Chow CWK, Saint C (2010) Recent developments in photocatalytic water treatment technology: a review. Water Res 44:2997–3027

    Article  CAS  Google Scholar 

  • Fathinia M, Khataee AR, Zarei M, Aber S (2010) Comparative photocatalytic degradation of two dyes on immobilized TiO2 nanoparticles: effect of dye molecular structure and response surface approach. J Mol Catal A Chem 333(1–2):73–84

    Article  CAS  Google Scholar 

  • Fu X, Yang H, Lu G, Tu Y, Wu J (2015) Improved performance of surface functionalized TiO2/activated carbon for adsorption–photocatalytic reduction of Cr(VI) in aqueous solution. Mater Sci Semicond Proces 39:362–370

    Article  CAS  Google Scholar 

  • Giannakas AE, Antonopoulou M, Deligiannakis Y, Konstantinou I (2013) Preparation, characterization of N–I co-doped TiO2 and catalytic performance toward simultaneous Cr(VI) reduction and benzoic acid oxidation. Appl Catal B Environ 140–141:636–645

    Article  Google Scholar 

  • Giannakas AE, Antonopoulou M, Daikopoulos C, Deligiannakis Y, Konstantinou I (2016) Characterization and catalytic performance of B-doped, B-N co-doped and B-N-F tri-doped TiO2 towards simultaneous Cr(VI) reduction and benzoic acid oxidation. Appl Catal B Environ 184:44–54

    Article  CAS  Google Scholar 

  • Hawley EL, Deeb RA, Kavanaugh MC, Jacobs JRG (2004) Treatment technologies for chromium(VI). In: Guertin J, Jacobs JA, Avakian CP (eds) Chromium(VI) handbook. CRC Press, Boca Raton, pp 275–310

    Google Scholar 

  • Jacobs JA, Testa SM (2004) Overview of chromium(VI) in the environment: backround and history. In: Guertin J, Jacobs JA, Avakian CP (eds) Chromium(VI) handbook. CRC Press, Boca Raton, pp 1–20

    Google Scholar 

  • Jiang G, Lin Z, Chen C, Zhu L, Chang Q, Wang N, Wei W, Tang H (2011) TiO2 nanoparticles assembled on graphene oxide nanosheets with high photocatalytic activity for removal of pollutants. Carbon 49:2693–2701

    Article  CAS  Google Scholar 

  • Konstantinou IΚ, Albanis TA (2003) Photocatalytic transformation of pesticides in aqueous TiO2 suspensions using artificial and solar light. Appl Catal B Environ 42:319–335

    Article  CAS  Google Scholar 

  • Konstantinou IK, Albanis TA (2004) TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations. Appl Catal B Environ 49:1–14

    Article  CAS  Google Scholar 

  • Ku Y, Jung IL (2001) photocatalytic reduction of Cr(VI) in aqueous solutions by UV irradiation in the presence of titanium dioxide. Water Res 35:135–142

    Article  CAS  Google Scholar 

  • Leary R, Westwood A (2011) Carbonaceous nanomaterials for the enhancement of TiO2 photocatalysis. Carbon 49:741–772

    Article  CAS  Google Scholar 

  • Lim TT, Yap PS, Srinivasan M, Fane AG (2011) TiO2/AC composites for synergistic adsorption-photocatalysis processes: present challenges and further developments for water treatment and reclamation. Crit Rev Environ Sci Technol 41:1173–1230

    Article  CAS  Google Scholar 

  • Lin WY, Wei C, Rajeshwar K (1993) Photocatalytic reduction and immobilization of hexavalent chromium at titanium dioxide in aqueous basic media. J Electrochem Soc 140:2477–2482

    Article  CAS  Google Scholar 

  • Liu W, Ni J, Yin X (2014) Synergy of photocatalysis and adsorption for simultaneous removal of Cr(VI) and Cr(III) with TiO2 and titanate nanotubes. Water Res 53:12–25

    Article  CAS  Google Scholar 

  • Ma M, Guo W, Yang Z, Huang S, Wang G (2015) Preparation and photocatalytic activity of TiO2/fine char for removal of rhodamine B. J Nanomat Article ID 538275, 5 pages

  • Machado TC, Lansarin MA, Matte N (2014) Reduction of hexavalent chromium: photocatalysis and photochemistry and their application in wastewater remediation. Water Sci Technol 70:55–61

    Article  CAS  Google Scholar 

  • Makrigianni V, Giannakas A, Daikopoulos C, Deligiannakis Y, Konstantinou I (2015) Preparation, characterization and photocatalytic performance of pyrolytic-tire-char/TiO2 composites, toward phenol oxidation in aqueous solutions. Appl Catal B Environ 174–175:244–252

    Article  Google Scholar 

  • Mukherjee K, Saha R, Ghosh A, Saha B (2013) Chromium removal technologies. Res Chem Intermed 39:2267–2286

    Article  CAS  Google Scholar 

  • Owlad M, Aroua MK, Daud WAW, Baroutian S (2008) Removal of hexavalent chromium-contaminated water and wastewater: a review. Water Air Soil Pollut 200:59–77

    Article  Google Scholar 

  • Pi L, Jiang R, Zhou W, Zhu H, Xiao W, Wang D, Mao X (2015) g-C3N4 modified biochar as an adsorptive and photocatalytic material for decontamination of aqueous organic pollutants. Appl Surf Sci 358:231–239

    Article  CAS  Google Scholar 

  • Rezaee A, Rangkooy H, Khavanin A, Jonidi Jafari A (2014) High photocatalytic decomposition of the air pollutant formaldehyde using nano-ZnO on bone char. Environ Chem Lett 12:353–357

    Article  CAS  Google Scholar 

  • Shaham-Waldmann N, Paz Y (2013) Beyond charge separation: the effect of coupling between titanium dioxide and CNTs on the adsorption and photocatalytic reduction of Cr(VI). Chem Eng J 231:49–58

    Article  CAS  Google Scholar 

  • Tan T, Beydoun D, Amal R (2003) Effects of organic hole scavengers on the photocatalytic reduction of selenium anions. J Photochem Photobiol A Chem 159:273–280

    Article  CAS  Google Scholar 

  • Tandon RK, Crisdp PY, Ellis J, Baker RS (1984) Effect of pH on chromium(VI) species in solution. Talanta 31:227–228

    Article  CAS  Google Scholar 

  • Vaez M, Moghaddam AZ, Alijani S (2012) Optimization and modeling of photocatalytic degradation of azo dye using a response surface methodology (RSM) based on the central composite design with immobilized titania nanoparticles. Ind Eng Chem Res 51:4199–4207

    Article  CAS  Google Scholar 

  • Wang SL, Chen CC, Tzou YM, Hsu CL, Chen JH, Lin CF (2009) A mechanism study of light-induced Cr(VI) reduction in an acidic solution. J Hazard Mater 164(1):223–228

    Article  CAS  Google Scholar 

  • Wang C, Cao M, Wang P, Ao Y, Hou J, Qian J (2014) Preparation of graphene–carbon nanotube–TiO2 composites with enhanced photocatalytic activity for the removal of dye and Cr (VI). Appl Catal A Gen 473:83–89

    Article  CAS  Google Scholar 

  • Yue D, Qian X, Zhao Y (2015) Photocatalytic remediation of ionic pollutant. Sci Bull 60:1791–1806

    Article  CAS  Google Scholar 

  • Zhao D, Sheng G, Chen C, Wang X (2012) Enhanced photocatalytic degradation of methylene blue under visible irradiation on graphene@TiO2 dyade structure. Appl Catal B Environ 111–112:303–308

    Article  Google Scholar 

  • Zhao Y, Zhao D, Chen C, Wang X (2013a) Enhanced photo-reduction and removal of Cr(VI) on reduced grapheme oxide decorated with TiO2 nanoparticles. J Colloid Interface Sci 405:211–217

    Article  CAS  Google Scholar 

  • Zhao D, Yang X, Chen C, Wang X (2013b) Enhanced photocatalytic degradation of methylene blue on multiwalled carbon nanotubes–TiO2. J Colloid Interface Sci 398:234–239

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is financially supported by the “SYNERGASIA” Program 11SYN_5_682 (O.P. Competitiveness and Entrepreneurship (EPAN II), ROP Macedonia-Thrace, ROP Crete and Aegean Islands, ROP Thessaly-Mainland Greece-Epirus, ROP Attica.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Antonopoulou or I. Konstantinou.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antonopoulou, M., Chondrodimou, I., Bairamis, F. et al. Photocatalytic reduction of Cr(VI) by char/TiO2 composite photocatalyst: optimization and modeling using the response surface methodology (RSM). Environ Sci Pollut Res 24, 1063–1072 (2017). https://doi.org/10.1007/s11356-016-6779-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-6779-x

Keywords

Navigation