Skip to main content
Log in

Photocatalytic remediation of ionic pollutant

  • Review
  • Materials Science
  • Published:
Science Bulletin

Abstract

Recently, the photocatalysts have attracted lots of attention and efforts due to their great potential for environmental remediation application. Toxic ions in water are an increasing environmental pollutant with the fast development. Numerous researches have been made to develop photocatalysts to treat ionic pollutants under the illumination of ultraviolet light and visible light. Here, photocatalytic remediation of toxic ionic pollutants has been reviewed. This review summarized and discussed various photocatalysts including TiO2, modified TiO2, metal oxides, metalsulfides, and nitrides and their recent progress in removing ionic pollutants such as heavy metal ion. The latest achievements and their future prospects of photocatalytic remediation of ion pollutant have also been reviewed.

摘要

光催化除了广泛应用于有机废水的降解外,目前也逐步被用于水中离子型污染物的处理。本文对能够降解离子型污染物的光催化剂进行了归类总结和讨论。光催化可以有效地降解离子型污染物,为了提高其对紫外光和可见光的利用效率,开发和应用了各种新型光催化剂。这些催化剂主要包括:二氧化钛、改性二氧化钛、金属氧化物、金属硫化物和氮化物以及它们的复合物。最后,总结和展望了近期光催化还原离子型污染物的研究成果以及光催化材料在降解离子型污染物应用方面的前景。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Chen Y, Chai L (2008) Comparison for adsorption modeling of heavy metals (Cd, Pb, Cu, Zn) from aqueous solution by bio-formulation. In: 2nd international conference on bioinformatics and biomedical engineering, Shanghai 2008

  2. Qiu R, Zhang D, Diao Z et al (2012) Visible light induced photocatalytic reduction of Cr(VI) over polymer-sensitized TiO2 and its synergism with phenol oxidation. Water Res 46:2299–2306

    Article  Google Scholar 

  3. Guillette LJ, Edwards TM (2005) Is nitrate an ecologically relevant endocrine disruptor in vertebrates? Integr Comp Biol 45:19–27

    Article  Google Scholar 

  4. Hamlin HJ, Moore BC, Edwards TM et al (2008) Nitrate-induced elevations in circulating sex steroid concentrations in female siberian sturgeon (acipenser baeri) in commercial aquaculture. Aquaculture 281:118–125

    Article  Google Scholar 

  5. Hamlin H (2006) Nitrate toxicity in siberian sturgeon (acipenser baeri). Aquaculture 253:688–693

    Article  Google Scholar 

  6. Hirayama J, Abe R, Kamiya Y (2014) Combinational effect of Pt/SrTiO3: Rh photocatalyst and SnPd/Al2O3 non-photocatalyst for photocatalytic reduction of nitrate to nitrogen in water under visible light irradiation. Appl Catal B 144:721–729

    Article  Google Scholar 

  7. Padmanabhan P, Sreekumar K, Thiyagarajan T et al (2006) Nano-crystalline titanium dioxide formed by reactive plasma synthesis. Vacuum 80:1252–1255

    Article  Google Scholar 

  8. Idris A, Hassan N, Ismail NSM et al (2010) Photocatalytic magnetic separable beads for chromium (VI) reduction. Water Res 44:1683–1688

    Article  Google Scholar 

  9. Sa J, Agüera CA, Gross S et al (2009) Photocatalytic nitrate reduction over metal modified TiO2. Appl Catal B 85:192–200

    Article  Google Scholar 

  10. Wehbe N, Jaafar M, Guillard C et al (2009) Comparative study of photocatalytic and non-photocatalytic reduction of nitrates in water. Appl Catal A 368:1–8

    Article  Google Scholar 

  11. Wang L, Wang N, Zhu L et al (2008) Photocatalytic reduction of Cr(VI) over different TiO2 photocatalysts and the effects of dissolved organic species. J Hazard Mater 152:93–99

    Article  Google Scholar 

  12. Zhang F, Jin R, Chen J et al (2005) High photocatalytic activity and selectivity for nitrogen in nitrate reduction on Ag/TiO2 catalyst with fine silver clusters. J Catal 232:424–431

    Article  Google Scholar 

  13. Kominami H, Nakaseko T, Shimada Y et al (2005) Selective photocatalytic reduction of nitrate to nitrogen molecules in an aqueous suspension of metal-loaded titanium (IV) oxide particles. Chem Commun 23:2933–2935

    Article  Google Scholar 

  14. Sang L, Zhao Y, Burda C (2014) TiO2 nanoparticles as functional building blocks. Chem Rev 114:9283–9318

    Article  Google Scholar 

  15. Bian Z, Zhu J, Wang S et al (2008) Self-assembly of active Bi2O3/TiO2 visible photocatalyst with ordered mesoporous structure and highly crystallized anatase. J Phys Chem C 112:6258–6262

    Article  Google Scholar 

  16. Zhang FS, Itoh H (2006) Photocatalytic oxidation and removal of arsenite from water using slag-iron oxide-TiO2 adsorbent. Chemosphere 65:125–131

    Article  Google Scholar 

  17. Ai H, Shi J, Chen J et al (2014) The preparation of nitrogen-doped TiO2 nanocrystals with exposed {001} facets and their visible-light photocatalytic performances. Chin Sci Bull 59:2199–2207

  18. Kumar PA, Ray M, Chakraborty S (2007) Hexavalent chromium removal from wastewater using aniline formaldehyde condensate coated silica gel. J Hazard Mater 143:24–32

    Article  Google Scholar 

  19. Selvi K, Pattabhi S, Kadirvelu K (2001) Removal of Cr(VI) from aqueous solution by adsorption onto activated carbon. Bioresour Technol 80:87–89

    Article  Google Scholar 

  20. Ku Y, Jung IL (2001) Photocatalytic reduction of Cr(VI) in aqueous solutions by UV irradiation with the presence of titanium dioxide. Water Res 35:135–142

    Article  Google Scholar 

  21. Asuha S, Zhou X, Zhao S (2010) Adsorption of methyl orange and Cr(VI) on mesoporous TiO2 prepared by hydrothermal method. J Hazard Mater 181:204–210

    Article  Google Scholar 

  22. Testa JJ, Grela MA, Litter MI (2001) Experimental evidence in favor of an initial one-electron-transfer process in the heterogeneous photocatalytic reduction of chromium(VI) over TiO2. Langmuir 17:3515–3517

    Article  Google Scholar 

  23. Barakat M (2011) New trends in removing heavy metals from industrial wastewater. Arab J Chem 4:361–377

    Article  Google Scholar 

  24. Hörold S, Vorlop KD, Tacke T et al (1993) Development of catalysts for a selective nitrate and nitrite removal from drinking water. Catal Today 17:21–30

    Article  Google Scholar 

  25. Yoon J, Shim E, Bae S et al (2009) Application of immobilized nanotubular TiO2 electrode for photocatalytic hydrogen evolution: reduction of hexavalent chromium (Cr(VI)) in water. J Hazard Mater 161:1069–1074

    Article  Google Scholar 

  26. Pifferi V, Spadavecchia F, Cappelletti G et al (2013) Electrodeposited nano-titania films for photocatalytic Cr(VI) reduction. Catal Today 209:8–12

    Article  Google Scholar 

  27. Yeber MC, Soto C, Riveros R et al (2009) Optimization by factorial design of copper(II) and toxicity removal using a photocatalytic process with TiO2 as semiconductor. Chem Eng J 152:14–19

    Article  Google Scholar 

  28. He Z, Cai Q, Wu M et al (2013) Photocatalytic reduction of Cr(VI) in an aqueous suspension of surface-fluorinated anatase TiO2 nanosheets with exposed 001 facets. Ind Eng Chem Res 52:9556–9565

  29. Yang Y, Wang G, Deng Q et al (2014) Microwave-assisted fabrication of nanoparticulate TiO2 microspheres for synergistic photocatalytic removal of Cr(VI) and methyl orange. ACS Appl Mater Interfaces 6:3008–3015

    Article  Google Scholar 

  30. Subramonian W, Wu TY (2014) Effect of enhancers and inhibitors on photocatalytic sunlight treatment of methylene blue. Water Air Soil Pollut 225:1–15

    Article  Google Scholar 

  31. Lalitha K, Reddy JK, Sharma MVP et al (2010) Continuous hydrogen production activity over finely dispersed Ag2O/TiO2 catalysts from methanol: water mixtures under solar irradiation: a structure-activity correlation. Int J Hydrog Energy 35:3991–4001

    Article  Google Scholar 

  32. Meshram S, Adhyapak P, Mulik U et al (2012) Facile synthesis of CuO nanomorphs and their morphology dependent sunlight driven photocatalytic properties. Chem Eng J 204:158–168

    Article  Google Scholar 

  33. Das S, Daud WMAW (2014) Photocatalytic CO2 transformation into fuel: a review on advances in photocatalyst and photoreactor. Renew Sustain Energy Rev 39:765–805

    Article  Google Scholar 

  34. Zhao Y, Burda C (2012) Development of plasmonic semiconductor nanomaterials with copper chalcogenides for a future with sustainable energy materials. Energy Environ Sci 5:5564–5576

    Article  Google Scholar 

  35. Mao C, Zhao Y, Qiu X et al (2008) Synthesis, characterization and computational study of nitrogen-doped CeO2 nanoparticles with visible-light activity. Phys Chem Chem Phys 10:5633–5638

    Article  Google Scholar 

  36. Qian XF, Kamegawa T, Mori K et al (2013) Calcium phosphate coatings incorporated in mesoporous TiO2/SBA-15 by a facile inner-pore sol-gel process toward enhanced adsorption-photocatalysis performances. J Phys Chem C 117:19544–19551

    Article  Google Scholar 

  37. Qian X, Fuku K, Kuwahara Y et al (2014) Design and functionalization of photocatalytic systems within mesoporous silica. ChemSusChem 7:1528–1536

    Article  Google Scholar 

  38. Fang W, Xing M, Zhang J (2014) A new approach to prepare Ti3+ self-doped TiO2 via NaBH4 reduction and hydrochloric acid treatment. Appl Catal B 160–161:240–246

    Article  Google Scholar 

  39. Ma Y, Xing M, Zhang J et al (2012) Synthesis of well ordered mesoporous Yb, N co-doped TiO2 with superior visible photocatalytic activity. Microporous Mesoporous Mater 156:145–152

    Article  Google Scholar 

  40. Xing M, Li X, Zhang J (2014) Synergistic effect on the visible light activity of Ti3+ doped TiO2 nanorods/boron doped graphene composite. Sci Rep 4:5493

    Google Scholar 

  41. Mao C, Zhao Y, Qiu X et al (2009) Synthesis and characterization of nitrogen-doped SnO2 and comparison to nitrogen-doped CeO2 nanoparticles for visible-light applications. ECS Trans 16:67–77

    Article  Google Scholar 

  42. Li J, Yang M, Jiang ZB (2014) One-step solvothermal synthesis of N-doped TiO2 nanoparticles with high photocatalytic activity in the reduction of aqueous Cr(VI). Chin Chem Lett 25:283–286

    Article  Google Scholar 

  43. Giannakas AE, Seristatidou E, Deligiannakis Y et al (2013) Photocatalytic activity of N-doped and N–F co-doped TiO2 and reduction of chromium(VI) in aqueous solution: an EPR study. Appl Catal B 132–133:460–468

    Article  Google Scholar 

  44. Zhang YC, Yang M, Zhang G et al (2013) HNO3-involved one-step low temperature solvothermal synthesis of N-doped TiO2 nanocrystals for efficient photocatalytic reduction of Cr(VI) in water. Appl Catal B 142–143:249–258

    Article  Google Scholar 

  45. Lei XF, Xue XX, Yang H (2014) Preparation and characterization of Ag-doped TiO2 nanomaterials and their photocatalytic reduction of Cr(VI) under visible light. Appl Surf Sci 321:396–403

    Article  Google Scholar 

  46. Peter A, Mihaly-Cozmuta L, Mihaly-Cozmuta A et al (2014) Photocatalytic efficiency of zeolite-based TiO2 composites for reduction of Cu(II): kinetic models. Int J Appl Ceram Technol 11:568–581

    Article  Google Scholar 

  47. Sowmya A, Meenakshi S (2014) Photocatalytic reduction of nitrate over Ag–TiO2 in the presence of oxalic acid. J Water Process Eng. doi:10.1016/j.jwpe.2014.11.004

    Google Scholar 

  48. Doudrick K, Yang T, Hristovski K et al (2013) Photocatalytic nitrate reduction in water: managing the hole scavenger and reaction by-product selectivity. Appl Catal B 136–137:40–47

    Article  Google Scholar 

  49. Liu X, Lv T, Liu Y et al (2013) TiO2–Au composite for efficient UV photocatalytic reduction of Cr(VI). Desalin Water Treat 51:3889–3895

    Article  Google Scholar 

  50. Pandikumar A, Ramaraj R (2012) Titanium dioxide-gold nanocomposite materials embedded in silicate sol-gel film catalyst for simultaneous photodegradation of hexavalent chromium and methylene blue. J Hazard Mater 203–204:244–250

    Article  Google Scholar 

  51. Dozzi MV, Saccomanni A, Selli E (2012) Cr(VI) photocatalytic reduction: effects of simultaneous organics oxidation and of gold nanoparticles photodeposition on TiO2. J Hazard Mater 211–212:188–195

    Article  Google Scholar 

  52. Rengaraj S, Venkataraj S, Yeon JW et al (2007) Preparation, characterization and application of Nd–TiO2 photocatalyst for the reduction of Cr(VI) under UV light illumination. Appl Catal B 77:157–165

    Article  Google Scholar 

  53. Kim Y, Joo H, Her N et al (2013) Self-rotating photocatalytic system for aqueous Cr(VI) reduction on TiO2 nanotube/Ti mesh substrate. Chem Eng J 229:66–71

    Article  Google Scholar 

  54. Luiz DDB, Andersen SLF, Berger C et al (2012) Photocatalytic reduction of nitrate ions in water over metal-modified TiO2. J Photochem Photobiol A 246:36–44

  55. Eskandarloo H, Badiei A, Behnajady MA et al (2014) Minimization of electrical energy consumption in the photocatalytic reduction of Cr(VI) by using immobilized Mg, Ag co-impregnated TiO2 nanoparticles. RSC Adv 4:28587

    Article  Google Scholar 

  56. Soares OSGP, Pereira MFR, Órfão JJM et al (2014) Photocatalytic nitrate reduction over Pd–Cu/TiO2. Chem Eng J 251:123–130

    Article  Google Scholar 

  57. Naimi-Joubani M, Shirzad-Siboni M, Yang JK et al (2015) Photocatalytic reduction of hexavalent chromium with illuminated ZnO/TiO2 composite. J Ind Eng Chem 22:317–323

    Article  Google Scholar 

  58. Ku Y, Lin CN, Hou WM (2011) Characterization of coupled NiO/TiO2 photocatalyst for the photocatalytic reduction of Cr(VI) in aqueous solution. J Mol Catal A Chem 349:20–27

  59. Kebir M, Trari M, Maachi R et al (2015) Relevance of a hybrid process coupling adsorption and visible light photocatalysis involving a new hetero-system CuCo2O4/TiO2 for the removal of hexavalent chromium. J Environ Eng 3:548–559

    Google Scholar 

  60. Zhang D, Li X, Tan H et al (2014) Photocatalytic reduction of Cr(VI) by polyoxometalates/TiO2 electrospun nanofiber composites. RSC Adv 4:44322–44326

  61. Yang L, Xiao Y, Liu S et al (2010) Photocatalytic reduction of Cr(VI) on WO3 doped long TiO2 nanotube arrays in the presence of citric acid. Appl Catal B 94:142–149

  62. Zhang M, Xu Z, Liang J et al (2015) Potential application of novel TiO2/β-FeOOH composites for photocatalytic reduction of Cr(VI) with an analysis of statistical approach. Int J Environ Sci Technol 12:1669–1676

    Article  Google Scholar 

  63. Liu X, Pan L, Lv T et al (2011) Microwave-assisted synthesis of TiO2-reduced graphene oxide composites for the photocatalytic reduction of Cr(VI). RSC Adv 1:1245

    Article  Google Scholar 

  64. Shaham-Waldmann N, Paz Y (2013) Beyond charge separation: the effect of coupling between titanium dioxide and CNTs on the adsorption and photocatalytic reduction of Cr(VI). Chem Eng J 231:49–58

    Article  Google Scholar 

  65. Xu X, Xu C, Dai J et al (2012) Size dependence of defect–induced room temperature ferromagnetism in undoped ZnO nanoparticles. J Phys Chem C 116:8813–8818

    Article  Google Scholar 

  66. Chakrabarti S, Chaudhuri B, Bhattacharjee S et al (2009) Photo-reduction of hexavalent chromium in aqueous solution in the presence of zinc oxide as semiconductor catalyst. Chem Eng J 153:86–93

    Article  Google Scholar 

  67. Samarghandi MR, Yang JK, Lee SM et al (2013) Effect of different type of organic compounds on the photocatalytic reduction of Cr(VI) in presence of ZnO nanoparticles. Desalin Water Treat 52:1531–1538

    Article  Google Scholar 

  68. Jin Z, Zhang YX, Meng FL et al (2014) Facile synthesis of porous single crystalline ZnO nanoplates and their application in photocatalytic reduction of Cr(VI) in the presence of phenol. J Hazard Mater 276:400–407

    Article  Google Scholar 

  69. Liu X, Lv T, Pan L et al (2012) Microwave-assisted synthesis of ZnO for photocatalytic reduction of Cr(VI) in aqueous solution. Desalin Water Treat 42:216–221

    Article  Google Scholar 

  70. Ketir W, Bouguelia A, Trari M (2008) Photocatalytic removal of M2+ (Ni2+, Cu2+, Zn2+, Cd2+, Hg2+ and Ag+) over new catalyst CuCrO2. J Hazard Mater 158:257–263

    Article  Google Scholar 

  71. Huang H, Feng Y, Zhou J et al (2013) Visible light photocatalytic reduction of Cr(VI) on Ag3PO4 nanoparticles. Desalin Water Treat 51:7236–7240

    Article  Google Scholar 

  72. Torres-Martínez LM, Moctezuma E, Ruiz-Gómez MA et al (2012) Sol-gel synthesis of Sm2InTaO7 and its photocatalytic activity on degradation of crystal violet dye and reduction of Cr(VI) ions. Res Chem Intermed 39:1533–1544

    Article  Google Scholar 

  73. Chen G, Sun M, Wei Q et al (2012) Efficient photocatalytic reduction of aqueous Cr(VI) over CaSb2O5(OH)2 nanocrystals under UV light illumination. Appl Catal B 125:282–287

    Article  Google Scholar 

  74. Yu J, Zhuang S, Xu X et al (2015) Photogenerated electron reservoir in hetero-p-n CuO–ZnO nanocomposite device for visible-light-driven photocatalytic reduction of aqueous Cr(VI). J Mater Chem A 3:1199–1207

    Article  Google Scholar 

  75. Mohamed RM, Gazzaz HA (2013) Environmental remediation from aqueous mercury(II) by photocatalytic reduction using a coupled SnO2–Co3O4 nanocomposite. Desalin Water Treat 53:2712–2719

    Article  Google Scholar 

  76. Lahmar H, Kebir M, Nasrallah N et al (2012) Photocatalytic reduction of Cr(VI) on the new hetero-system CuCr2O4/ZnO. J Mol Catal A Chem 353–354:74–79

  77. Hashemzadeh F, Gaffarinejad A, Rahimi R (2015) Porous p-NiO/n–Nb2O5 nanocomposites prepared by an eisa route with enhanced photocatalytic activity in simultaneous Cr(VI) reduction and methyl orange decolorization under visible light irradiation. J Hazard Mater 286:64–74

    Article  Google Scholar 

  78. Yuan Q, Chen L, Xiong M et al (2014) Cu2O/BiVO4 heterostructures: synthesis and application in simultaneous photocatalytic oxidation of organic dyes and reduction of Cr(VI) under visible light. Chem Eng J 255:394–402

    Article  Google Scholar 

  79. Malkhasian AYS, Mohamed RM (2015) Environmental remediation of Cr(VI) solutions by photocatalytic reduction using Ag–Er(OH)3 nanocomposite. J Alloy Compd 632:735–740

    Article  Google Scholar 

  80. Mohamed RM, Baeissa ES (2014) Environmental remediation of aqueous nitrate solutions by photocatalytic reduction using Pd/NaTaO3 nanoparticles. J Ind Eng Chem 20:1367–1372

    Article  Google Scholar 

  81. Zhao Y, Zhang Y, Li J et al (2014) Solvothermal synthesis of nonmetals-modified SnO2 nanoparticles with high visible-light-activated photocatalytic activity in the reduction of aqueous Cr(VI). Sep Purif Technol 129:90–95

    Article  Google Scholar 

  82. Dk Padhi, Pradhan GK, Parida KM et al (2014) Facile fabrication of Gd(OH)3 nanorod/RGO composite: synthesis, characterisation and photocatalytic reduction of Cr(VI). Chem Eng J 255:78–88

    Article  Google Scholar 

  83. Liu X, Pan L, Lv T et al (2011) Microwave-assisted synthesis of ZnO-graphene composite for photocatalytic reduction of Cr(VI). Catal Sci Technol 1:1189–1193

    Article  Google Scholar 

  84. Zhang K, Guo L (2013) Metal sulphide semiconductors for photocatalytic hydrogen production. Catal Sci Technol 3:1672–1690

    Article  Google Scholar 

  85. Mondal C, Ganguly M, Pal J et al (2014) Morphology controlled synthesis of SnS2 nanomaterial for promoting photocatalytic reduction of aqueous Cr(VI) under visible light. Langmuir 30:4157–4164

    Article  Google Scholar 

  86. Hu E, Gao X, Etogo A et al (2014) Controllable one-pot synthesis of various one-dimensional Bi2S3 nanostructures and their enhanced visible-light-driven photocatalytic reduction of Cr(VI). J Alloys Compd 611:335–340

    Article  Google Scholar 

  87. Yang J, Yue M, Ju J et al (2014) Co-molten solvothermal method for synthesizing chalcopyrite CuFe1−x Cr x S2 (x ≤ 0.4): high photocatalytic activity for the reduction of nitrate ions. Dalton Trans 43:15385–15390

    Article  Google Scholar 

  88. Wei H, Jiang H, Zheng Z et al (2013) Ethylenediamine-assisted solvothermal synthesis of one-dimensional Cd x Zn1−x S solid solutions and their photocatalytic activity for nitrobenzene reduction. Mater Res Bull 48:1352–1356

    Article  Google Scholar 

  89. Wang L, Li X, Teng W et al (2013) Efficient photocatalytic reduction of aqueous Cr(VI) over flower-like SnIn4S8 microspheres under visible light illumination. J Hazard Mater 244–245:681–688

    Article  Google Scholar 

  90. Gherbi R, Nasrallah N, Amrane A et al (2011) Photocatalytic reduction of Cr(VI) on the new hetero-system CuAl2O4/TiO2. J Hazard Mater 186:1124–1130

    Article  Google Scholar 

  91. Liu X, Pan L, Lv T et al (2011) Microwave-assisted synthesis of CdS-reduced graphene oxide composites for photocatalytic reduction of Cr(VI). Chem Commun 47:11984–11986

    Article  Google Scholar 

  92. Hu X, Ji H, Chang F et al (2014) Simultaneous photocatalytic Cr(VI) reduction and 2,4,6-TCP oxidation over g-C3N4 under visible light irradiation. Catal Today 224:34–40

    Article  Google Scholar 

  93. Zhang Y, Zhang Q, Shi Q et al (2015) Acid-treated g-C3N4 with improved photocatalytic performance in the reduction of aqueous Cr(VI) under visible-light. Sep Purif Technol 142:251–257

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Recruitment Program of Global Experts in China, the Start-up Funds from Shanghai Jiao Tong University, the National Natural Science Foundation of China (51372151, 21303103), and the Foundation of Shanghai Government (15PJ1404000).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yixin Zhao.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yue, D., Qian, X. & Zhao, Y. Photocatalytic remediation of ionic pollutant. Sci. Bull. 60, 1791–1806 (2015). https://doi.org/10.1007/s11434-015-0918-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-015-0918-5

Keywords

Navigation