Skip to main content
Log in

Core-shell Fe3O4@MIL-101(Fe) composites as heterogeneous catalysts of persulfate activation for the removal of Acid Orange 7

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

In this study, a novel core-shell Fe3O4@MIL-101 (MIL stands for Materials of Institute Lavoisier) composite was successfully synthesized by hydrothermal method and was fully characterized by X-ray diffraction, transmission electron microscopy, Fourier-transform infrared spectra, and X-ray photoelectron spectroscopy. The composite was introduced as a catalyst to generate powerful radicals from persulfate for the removal of Acid Orange 7 in an aqueous solution. Effects of the central metal ions of MIL-101, amino group content of MIL-101, and pH were evaluated in batch experiments. It was found that both hydroxyl and sulfate radicals were generated; importantly, sulfate radicals were speculated to serve as the dominant active species in the catalytic oxidation of Acid Orange 7. In addition, a possible mechanism was proposed. This study provides new physical insights for the rational design of advanced metal-organic frameworks (MOF)-based catalysts for improved environmental remediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Chen WS, Su YC (2012) Removal of dinitrotoluenes in wastewater by sonoactivated persulfate. Ultrason Sonochem 19:921–927

    Article  CAS  Google Scholar 

  • Corma A, García H, Llabrési FX (2010) Engineering metal organic frameworks for heterogeneous catalysis. Chem Rev 110:4606–4655

    Article  CAS  Google Scholar 

  • Deng J, Shao Y, Gao N, Deng Y, Zhou S, Hu X (2013) Thermally activated persulfate (TAP) oxidation of antiepileptic drug carbamazepine in water. Chem En J 228:765–771

    Article  CAS  Google Scholar 

  • Dhakshinamoorthy A, Alvaro M, Garcia H (2011) Metal-organic frameworks as heterogeneous catalysts for oxidation reactions. Catal Sci Technol 1:856–867

    Article  CAS  Google Scholar 

  • Ding Y, Zhu L, Wang N, Tang H (2013) Sulfate radicals induced degradation of tetrabromobisphenol A with nanoscaled magnetic CuFe2O4 as a heterogeneous catalyst of peroxymonosulfate. Appl Catal B Environ 129:153–162

    Article  CAS  Google Scholar 

  • Du JJ, Yuan YP, Sun JX, Peng FM, Jiang X, Qiu LG, Xie AJ, Shen YH, Zhu JF (2011) New photocatalysts based on MIL-53 metal-organic frameworks for the decolorization of methylene blue dye. J Hazard Mater 190:945–951

    Article  CAS  Google Scholar 

  • Fang GD, Dionysiou DD, Zhou DM, Wang Y, Zhu XD, Fan JX, Cang L, Wang YJ (2013) Transformation of polychlorinated biphenyls by persulfate atambient temperature. Chemosphere 90:1573–1580

    Article  CAS  Google Scholar 

  • Férey G, Mellot-Draznieks C, Serre C, Millange F (2005) Crystallized frameworks with giant pores: are there limits to the possible? Acc Chem Res 38:217–225

    Article  Google Scholar 

  • Gu X, Lu S, Qiu Z, Sui Q, Banks CJ, Imai T, Lin K, Luo Q (2013) Photodegradation performance of 1,1,1-trichloroethane in aqueous solution: in the presence and absence of persulfate. Chem Eng J 215–216:29–35

    Article  Google Scholar 

  • Horcajada P, Serre C, Maurin G, Ramashye NA, Balas F, Vallet-Regí M, Sebban M, Taulelle F, Férey G (2008) Flexible porous metal-organic frameworks for a controlled drug delivery. J Am Chem Soc 130:6774–6780

    Article  CAS  Google Scholar 

  • Horcajada P, Chalati T, Serre C, Gillet B, Sebrie C, Baati T, Eubank JF, Heurtaux D, Clayette P, Kreuz C, Chang JS, Hwang YK, Marsaud V, Bories PN, Cynober L, Gil S, Férey G, Couvreur P, Gref R (2010) Porous metal-organic framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat Mater 9:172–178

    Article  CAS  Google Scholar 

  • Khan JA, He X, Khan HM, Shah NS, Dionysiou DD (2013) Oxidative degradation of atrazine in aqueous solution by UV/H2O2/Fe2+, UV/S2O8 2−/Fe2+ and UV/HSO5 /Fe2+ processes: a comparative study. Chem Eng J 218:376–383

    Article  CAS  Google Scholar 

  • Khan JA, He X, Shah NS, Khan HM, Hapeshi E, Fatta-Kassinos D, Dionysiou DD (2014) Kinetic and mechanism investigation on the photochemical degradation of atrazine with activated H2O2, S2O8 2− and HSO5 . Chem Eng J 252:393–403

    Article  CAS  Google Scholar 

  • Lemaire J, Buès M, Kabeche T, Hanna K, Simonnot MO (2013) Oxidant selection to treat an aged PAH contaminated soil by in situ chemical oxidation. J Environ Chem Eng 1:1261–1268

    Article  CAS  Google Scholar 

  • Leng YQ, Guo WL, Shi X, Li YY, Xing LT (2013) Polyhydroquinone-coated Fe3O4 nanocatalyst for degradation of rhodamine B based on sulfate radicals. Ind Eng Chem Res 52:13607–13612

    Article  CAS  Google Scholar 

  • Li JR, Kuppler RJ, Zhou HC (2009) Selective gas adsorption and separation in metal-organic frameworks. Chem Soc Rev 38:1477–1504

    Article  CAS  Google Scholar 

  • Liang CJ, Bruell CJ, Marley MC, Sperry KL (2004) Persulfate oxidation for in situ remediation of TCE. I. Activated by ferrous ion with and without a persulfate-thiosulfate redox couple. Chemosphere 55:1213–1223

    Article  CAS  Google Scholar 

  • Liao X, Zhao D, Yan X, Huling SG (2014) Identification of persulfate oxidation products of polycyclic aromatic hydrocarbon during remediation of contaminated soil. J Hazard Mater 276:26–34

    Article  CAS  Google Scholar 

  • Lin S, Gurol MD (1998) Catalytic decomposition of hydrogen peroxide on iron oxide: kinetics, mechanism, and implications. Environ Sci Technol 32:1417–1423

    Article  CAS  Google Scholar 

  • Lunar L, Sicilia D, Rubio S, Pearez-Bendito D, Nicke U (2000) Degradation of photographic developers by Fenton’s reagent: condition optimization and kinetics for metal oxidation. Water Res 34:1791–1802

    Article  CAS  Google Scholar 

  • Lv HL, Zhao HY, Cao TC, Qian L, Wang YB, Zhao GH (2015) Efficient degradation of high concentration azo-dye wastewater by heterogeneous Fenton process with iron-based metal-organic framework. J Mol Catal A Chem 400:81–89

    Article  CAS  Google Scholar 

  • Rodriguez S, Santos A, Romero A, Vicente F (2012) Kinetic of oxidation and mineralization of priority and emerging pollutants by activated persulfate. Chem Eng J 213:225–234

    Article  CAS  Google Scholar 

  • Romero A, Santos A, Vicente F, González C (2010) Diuron abatement using activated persulphate: effect of pH, Fe(II) and oxidant dosage. Chem Eng J 16:257–265

    Article  Google Scholar 

  • Skobelev IY, Sorokin AB, Kovalenko KA, Fedin VP, Kholdeeva OA (2013) Solvent-free allylic oxidation of alkenes with O2 mediated by Fe- and Cr-MIL-101. J Catal 298:61–69

    Article  CAS  Google Scholar 

  • Su SN, Guo WL, Leng YQ, Yi CL, Ma ZM (2013) Heterogeneous activation of Oxone by CoxFe3−xO4 nanocatalysts for degradation of Rhodamine B. J Hazard Mater 244–245:736–742

    Article  Google Scholar 

  • Taylor-Pashow KML, Rocca JD, Xie ZG, Tran S, Lin WB (2009) Postsynthetic modifications of iron-carboxylate nanoscale metal-organic frameworks for imaging and drug delivery. J Am Chem Soc 131:14261–14263

    Article  CAS  Google Scholar 

  • Tsitonaki A, Petri B, Crimi M, Mosbaek H, Siegrist RL, Bjerg PL (2010) In situ chemical oxidation of contaminated soil and groundwater using persulfate: a review. Crit Rev Environ Sci Technol 40:55–91

    Article  CAS  Google Scholar 

  • Wu CH (2008) Reactive Red 198 in UV/TiO2-based systems. Dyes Pigments 71:31–38

    Article  Google Scholar 

  • Wu J, Zhang H, Qiu JJ (2012) Degradation of Acid Orange 7 in aqueous solution byanovel electro/Fe2+/peroxydisulfate process. J Hazard Mater 215–216:138–145

    Article  Google Scholar 

  • Xu LJ, Wang JL (2012) Fenton-like degradation of 2,4-dichlorophenol using Fe3O4 magnetic nanoparticles. Appl Catal B Environ 123–124:117–126

    Article  Google Scholar 

  • Yan AG, Liu XH, Qiu GZ, Zhang N, Shi RR, Yi R, Tang MT, Che RC (2007) A simple solvothermal synthesis and characterization of round-biscuit-like Fe3O4 nanoparticles with adjustable sizes. Solid State Commun 144:315–318

    Article  CAS  Google Scholar 

  • Yan JC, Lei M, Zhu LH, Anjum MN, Zou J, Tang HQ (2011) Degradation of sulfamonomethoxine with Fe3O4 magnetic nanoparticles as heterogeneous activator of persulfate. J Hazard Mater 186:1398–1404

    Article  CAS  Google Scholar 

  • Yao YJ, Cai YM, Wu GD, Wei FY, Li XY, Chen H, Wang SB (2015) Sulfate radicals induced from peroxymonosulfate by cobalt manganese oxides (CoxMn3−xO4) for Fenton-like reaction in water. J Hazard Mater 296:128–137

    Article  CAS  Google Scholar 

  • Zeng T, Zhang XL, Wang SH, Niu HY, Cai YQ (2015) Spatial confinement of Co3O4 catalyst in hollow metal-organic framework as nanoreactor for improved degradation of organic pollutant. Environ Sci Technol 49:2350–2357

    Article  CAS  Google Scholar 

  • Zhang SL, Du Z, Li GK (2013a) Metal-organic framework-199/graphite oxide hybrid composites coated solid-phase microextraction fibers coupled with gas chromatography for determination of organochlorine pesticides from complicated samples. Talanta 115:32–39

    Article  CAS  Google Scholar 

  • Zhang T, Zhu H, Croué JP (2013b) Production of sulfate radical from peroxymonosulfate induced by a magnetically separable CuFe2O4 spinel in water: efficiency, stability, and mechanism. Environ Sci Technol 47:2784–2791

    Article  CAS  Google Scholar 

  • Zhang SL, Jiao Z, Yao WX (2014) A simple solvothermal process for fabrication of a metal-organic framework with an iron oxide enclosure for the determination of organophosphorus pesticides in biological samples. J Chromatogr A 1371:74–81

    Article  CAS  Google Scholar 

  • Zhao JY, Zhang YB, Quan X, Chen S (2010) Enhanced oxidation of 4-chlorophenolusing sulfate radicals generated from zero-valent iron and peroxydisulfate at ambient temperature. Sep Purif Technol 71:302–307

    Article  CAS  Google Scholar 

  • Zhao D, Timmons DJ, Yuan DQ, Zhou HC (2011) Tuning the topology and functionality of metal-organic frameworks by ligand design. Acc Chem Res 44:123–133

    Article  CAS  Google Scholar 

  • Zhu SB, Xu TG, Fu HB, Zhao JC, Zhu YF (2007) Synergetic effect of Bi2WO6 photocatalyst with C60 and enhanced photoactivity under visible irradiation. Environ Sci Technol 41:6234–6239

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation, China (Grant No. 51578264), the Shandong Provincial Natural Science Foundation, China (Grant No. ZR2013EEM004), and the Shandong Provincial Science and Technology Development Program, China (Grant No. 2014GSF117008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weilin Guo.

Additional information

Responsible editor: Bingcai Pan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yue, X., Guo, W., Li, X. et al. Core-shell Fe3O4@MIL-101(Fe) composites as heterogeneous catalysts of persulfate activation for the removal of Acid Orange 7. Environ Sci Pollut Res 23, 15218–15226 (2016). https://doi.org/10.1007/s11356-016-6702-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-6702-5

Keywords

Navigation