Skip to main content
Log in

Changing roles of ammonia-oxidizing bacteria and archaea in a continuously acidifying soil caused by over-fertilization with nitrogen

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Nitrification coupled with nitrate leaching contributes to soil acidification. However, little is known about the effect of soil acidification on nitrification, especially on ammonia oxidation that is the rate-limiting step of nitrification and performed by ammonia-oxidizing bacteria (AOB) and archaea (AOA). Serious soil acidification occurs in Chinese greenhouses due to the overuse of N-fertilizer. In the present study, greenhouse soils with 1, 3, 5, 7, and 9 years of vegetable cultivation showed a consistent pH decline (i.e., 7.0, 6.3, 5.6, 4.9, and 4.3). Across the pH gradient, we analyzed the community structure and abundance of AOB and AOA by pyrosequencing and real-time PCR techniques, respectively. The recovered nitrification potential (RNP) method was used to determine relative contributions of AOA and AOB to nitrification potential. The results revealed that soil acidification shaped the community structures of AOA and AOB. In acidifying soil, soil pH, NH3 concentration, and DOC content were critical factors shaping ammonia oxidizer community structure. AOB abundance, but not AOA, was strongly influenced by soil acidification. When soil pH was below 5.0, AOA rather than AOB were responsible for almost all of the RNP. However, when soil pH ranged from 5.6 to 7.0, AOB were the major contributors to RNP. The group I.1a-associatied AOA had more relative abundance in low pH (pH<6.3), whereas group I.1b tended to prefer neutral pH. Clusters 2, 10, and 12 in AOB were more abundant in acidic soil (pH <5.6), while Nitrosomonas-like lineage and unclassified lineage 3 were prevailing in neutral soil and slightly acidic soil (pH, 6.0–6.5), respectively. These results suggested that soil acidification had a profound impact on ammonia oxidation and more specific lineages in AOB occupying different pH-associated niches required further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Blainey PC, Mosier AC, Potanina A, Francis CA, Quake SR (2011) Genome of a low-salinity ammonia-oxidizing archaeon determined by single-cell and metagenomic analysis. PLoS One 6(2):1–12

    Article  Google Scholar 

  • Bolan NS, Hedley MJ, White RE (1991) Processes of soil acidification during nitrogen cycling with emphasis on legume based pastures. Plant Soil 134(1):53–63

    CAS  Google Scholar 

  • Bollmann A, Bar-Gilissen MJ, Laanbroek HJ (2002) Growth at low ammonium concentrations and starvation response as potential factors involved in niche differentiation among ammonia-oxidizing bacteria. Appl Environ Microbiol 68(10):4751–4757

    Article  CAS  Google Scholar 

  • Brochier-Armanet C, Boussau B, Gribaldo S, Forterre P (2008) Mesophilic Crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota. Nat Rev Microbiol 6(3):245–252

    Article  CAS  Google Scholar 

  • Bru D, Ramette A, Saby NPA, Dequiedt S, Ranjard L, Jolivet C, Arrouays D, Philippot L (2011) Determinants of the distribution of nitrogen-cycling microbial communities at the lands cape scale. ISME J 5(3):532–542

    Article  CAS  Google Scholar 

  • Dong X, Gao YM, Yao HY, Huang CY (2009) Nitrification potentials of Chinese tea orchard soils and their adjacent wasteland and forest soils. J Environ Sci 21(9):1225–1229

    Article  Google Scholar 

  • Erguder TH, Boon N, Wittebolle L, Marzorati M, Verstraete W (2009) Environmental factors shaping the ecological niches of ammonia-oxidizing archaea. FEMS Microbiol Rev 33(5):855–869

    Article  CAS  Google Scholar 

  • Fierer N, Carney KM, Horner-Decine MC, Megonigal JP (2009) The biogeography of ammonia-oxidizing bacterial communities in soil. Microb Ecol 58(2):435–445

    Article  Google Scholar 

  • Francis CA, Roberts KJ, Beman JM, Santoro AE, Oakleyet BB (2005) Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proc Natl Acad Sci U S A 102(41):14683–14688

    Article  CAS  Google Scholar 

  • Gubry-Rangin C, Nicol GW, Prosser J (2010) Archaea rather than bacteria control nitrification in two agricultural acidic soils. FEMS Microbiol Ecol 74(3):566–574

    Article  CAS  Google Scholar 

  • Gubry-Rangin C, Hai B, Quince C, Engel M, Thomson BC, James P, Schloter M, Griffiths RI, Prosser JI, Nicol GW (2011) Niche specialization of terrestrial archaeal ammonia oxidizers. Proc Natl Acad Sci U S A 108(52):21206–21211

    Article  CAS  Google Scholar 

  • Guo JH, Liu XJ, Zhang Y, Shen JL, Han WX, Zhang WF, Christie P, Goulding KWT, Vitousek PM, Zhang FS (2010) Significant acidification in major Chinese croplands. Science 327(5968):1008–1010

    Article  CAS  Google Scholar 

  • Hart SC, Stark JM, Davidson EA, Firestone MK (1994) Nitrogen mineralization, immobilization, and nitrification. In: Weaver RW, Angle S, Bottomley P, Bezdiecek D, Smith S, Tabatabai A, Wollum A (eds) Methods of soil analysis. Part 2, Microbiological and Biochemical Properties. SSSA Book Series, No. 5. SSSA, Madison, WI, pp 1011–1016

    Google Scholar 

  • He FF, Chen Q, Jiang RF, Chen XP, Zhang FS (2007a) Yield and nitrogen balance of greenhouse tomato (Lycopersicum esculentum Mill.) with conventional and site-specific nitrogen management in northern China. Nutr Cycling Agroecosyst 77(1):1–14

    Article  Google Scholar 

  • He JZ, Shen JP, Zhang LM, Zhu YG, Zheng YM, Xu MG, Jing HJ (2007b) Quantitative analyses of the abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea of a Chinese upland red soil under long-term fertilization practices. Environ Microbiol 9(2):2364–2374

    Article  CAS  Google Scholar 

  • He JZ, Hu HW, Zhang LM (2012) Current insights into the autotrophic thaumarchaeal ammonia oxidation in acidic soils. Soil Biol Biochem 55:146–154

    Article  CAS  Google Scholar 

  • Hu HW, Xu ZH, He JZ (2014) Ammonia-oxidizing archaea play a predominant role in acid soil nitrification. Adv Agron 25:261–294

    Article  Google Scholar 

  • Jia ZL, Conrad R (2009) Bacteria rather than Archaea dominate microbial ammonia oxidation in an agricultural soil. Environ Microbiol 11(7):1658–1671

    Article  CAS  Google Scholar 

  • Jiang QQ, Bakken LR (1999) Comparison of Nitrosospira strains isolated from terrestrial environments. FEMS Microbiol Ecol 30(2):171–186

    Article  CAS  Google Scholar 

  • Jiang HC, Huang LQ, Deng Y, Wang S, Zhou Y, Liu L, Dong HL (2014) Latitudinal distribution of ammonia-oxidizing bacteria and archaea in the agricultural soils of eastern China. Appl Environ Microb 80(18):5593–5602

    Article  Google Scholar 

  • Jung MY, Well R, Min D, Giesemann A, Park SJ, Kim JG, Kim SJ, Rhee SK (2014) Isotopic signatures of N2O produced by ammonia-oxidizing archaea from soils. ISME J 8(5):1115–1125

    Article  CAS  Google Scholar 

  • Kim Y, Liesack W (2014) DAFGA: diversity analysis of functional gene amplicons. Bioinformatics 30(19):2820–2821

    Article  Google Scholar 

  • Leininger S, Urich T, Schloter M (2006) Archaea predominate among ammonia oxidizing prokaryotes in soils. Nature 442(7104):806–809

    Article  CAS  Google Scholar 

  • Li JL, Cui DJ, Meng YX, Li XL, Zhang FS (2002) The study of fertilization condition and question in protectorate vegetable in Shouguang, Shandong (In Chinese with English abstract). Chin J Soil Sci 33(2):126–128

    Google Scholar 

  • Li H, Weng BS, Huang FY, Su JQ, Yang XR (2015) pH regulates ammonia-oxidizing bacteria and archaea in paddy soils in southern China. Appl Microbiol Biotechnol 99(14):6113–6123

    Article  CAS  Google Scholar 

  • Nicol GW, Leininger S, Schleper C, Prosser JI (2008) The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria. Environ Microbiol 10(11):2966–2978

    Article  CAS  Google Scholar 

  • Norman JS, Barrett JE (2014) Substrate and nutrient limitation of ammonia-oxidizing bacteria and archaea in temperate forest soil. Soil Biol Biochem 69:141–146

    Article  CAS  Google Scholar 

  • Pester M, Rattei T, Flechl S, Grongroft A, Richter A, Overmann J, Reinhold-Hurek B, Loy A, Wagner M (2012) amoA-based consensus phylogeny of ammonia-oxidizing archaea and deep sequencing of amoA genes from soils of four different geographic regions. Environ Microbiol 14(2):525–539

    Article  CAS  Google Scholar 

  • Prosser JI, Nicol GW (2008) Relative contributions of archaea and bacteria to aerobic ammonia oxidation in the environment. Environ Microbiol 10(11):2931–2941

    Article  CAS  Google Scholar 

  • Prosser JI, Nicol GW (2012) Archaeal and bacterial ammonia-oxidisers in soil: the quest for niche specialisation and differentiation. Trends Microbiol 20(11):523–531

  • Rotthauwe JH, Witzel KP, Liesack W (1997) The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl Environ Microbiol 63(12):4704–4712

    CAS  Google Scholar 

  • Sayavedra-Soto LA, Arp DJ (2011) Ammonia-oxidizing bacteria: their biochemistry and molecular biology. In: Ward B, Arp D, Klotz M (eds) Nitrification. ASM Press, Washington, pp 11–37

    Chapter  Google Scholar 

  • Schmidt I (2009) Chemoorganoheterotrophic growth of Nitrosomonas europaea and Nitrosomonas eutropha. Curr Microbiol 59(2):130–138

    Article  CAS  Google Scholar 

  • Shen JP, Zhang ML, Di HJ, He JZ (2012) A review of ammonia-oxidizing bacteria and archaea in Chinese soils. Front Microbiol 3(296):1–7

    Google Scholar 

  • Song XZ, Zhao CX, Wang XL, Li J (2009) Study of nitrate leaching and nitrogen fate under intensive vegetable production pattern in northern China. CR Biol 332(4):385–392

    Article  CAS  Google Scholar 

  • Song H, Guo JH, Ren T, Chen Q, Li BG, Wang JG (2012) Increase of soil pH in a solar greenhouse vegetable production system. Soil Sci Soc Am J 76(6):2074–2082

    Article  CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739

    Article  CAS  Google Scholar 

  • Taylor AE, Zeglin LH, Dooley S, Myrold DD, Bottomley PJ (2010) Evidence for different contributions of archaea and bacteria to the ammonia-oxidizing potential of diverse Oregon soils. Appl Environ Microbiol 76(23):7691–7698

    Article  CAS  Google Scholar 

  • Taylor AE, Zeglin LH, Wanzek TA (2012) Dynamics of ammonia-oxidizing archaea and bacteria populations and contributions to soil nitrification potentials. ISME J 6(11):2024–2032

    Article  CAS  Google Scholar 

  • Tourna M, Stieglmeier M, Spang A, Könneke M, Schintlmeister A, Urich T, Engel M, Schloter M, Wagner M, Richter A, Schleper C (2011) Nitrososphaera viennensis, an ammonia oxidizing archaeon from soil. Proc Natl Acad Sci U S A 108(20):8420–8425

    Article  CAS  Google Scholar 

  • Treusch AH, Leininger S, Kletzin A, Schuster SC, Klenk HP, Schleper C (2005) Novel genes for nitrite reductase and Amo-related proteins indicate a role of uncultivated mesophilic crenarchaeota in nitrogen cycling. Environ Microbiol 7(12):1985–1995

    Article  CAS  Google Scholar 

  • Valentine DL (2007) Adaptations to energy stress dictate the ecology and evolution of the Archaea. Nat Rev Microbiol 5(4):316–323

    Article  CAS  Google Scholar 

  • von Uexküll HR, Mutert E (1995) Global extent, development and economic impact of acid soils. In: Date RA, Grundon NJ, Raymet GE, Probert ME (eds) Plant–soil interactions at low pH, principles and management. Kluwer, New York, pp 5–19

    Chapter  Google Scholar 

  • Walker CB, de la Torre JR, Klotz MG, Urakawa H, Pinela N, Arp DJ, Brochier-Armanet C, Chain PS, Chan PP, Gollabgir A, Hemp J, Hügler M, Karr EA, Könneke M, Shin M, Lawton TJ, Lowe T, Martens-Habbena W, Sayavedra-Soto LA, Lang D, Sievert SM, Rosenzweig AC, Manning G, Stahl DA (2010) Nitrosopumilus maritimus genome reveals unique mechanisms for nitrification and autotrophy in globally distributed marine crenarchaea. Proc Natl Acad Sci U S A 107(19):8818–8823

    Article  CAS  Google Scholar 

  • Wang BZ, Zhao J, Guo ZY, Ma J, Xu H, Jia ZJ (2015a) Differential contributions of ammonia oxidizers and nitrite oxidizers to nitrification in four paddy soils. ISME J 9(5):1062–1075

    Article  CAS  Google Scholar 

  • Wang XL, Han C, Zhang JB, Huang QR, Deng H, Deng YC, Zhong WH (2015b) Long-term fertilization effects on active ammonia oxidizers in an acidic upland soil in China. Soil Biol Biochem 84:28–37

    Article  CAS  Google Scholar 

  • Xia W, Zhang C, Zeng X, Feng Y, Weng J, Lin X, Zhu J, Xiong Z, Xu J, Cai Z (2011) Autotrophic growth of nitrifying community in an agricultural soil. ISME J 5(7):1226–1236

    Article  CAS  Google Scholar 

  • Xia F, Zeleke J, Sheng Q, Wu JH, Quan ZX (2015) Communities of ammonia oxidizers at different stages of Spartina alterniflora invasion in salt marshes of Yangtze River estuary. J Microbiol 53(5):311–320

    Article  Google Scholar 

  • Yao HY, Gao YM, Nicol GW, Campbell CD, Prosser JI, Zhang LM, Han WY, Singh BK (2011) Links between ammonia oxidizer community structure, abundance, and nitrification potential in acidic soils. Appl Environ Microbiol 77(13):4618–4625

    Article  CAS  Google Scholar 

  • Yao HY, Campbell CD, Chapman SJ, Freitag TE, Nicol GW, Singh BK (2013) Multi-factorial drivers of ammonia oxidizer communities: evidence from a national soil survey. Environ Microbiol 15(9):2545–2556

    Article  CAS  Google Scholar 

  • Zhang LM, Wang M, Prosser JI, Zheng YM, He JZ (2009) Altitude ammonia-oxidizing bacteria and archaea in soils of Mount Everest. FEMS Microbiol Ecol 70(2):208–217

    Article  CAS  Google Scholar 

  • Zhang LM, Offre PR, He JZ, Verhamme DT, Nicol GW, Prosser JI (2010) Autotrophic ammonia oxidation by soil thaumarchaea. Proc Natl Acad Sci U S A 107(40):17240–17245

    Article  CAS  Google Scholar 

  • Zhang LM, Hu HW, Shen JP, He JZ (2012) Ammonia-oxidizing archaea have more important role than ammonia-oxidizing bacteria in ammonia oxidation of strongly acidic soils. ISME J 6(5):1032–1045

    Article  CAS  Google Scholar 

  • Zhang Y, Chen LJ, Sun RH, Dai TJ, Tian JP, Wen DH (2015) Ammonia-oxidizing bacteria and archaea in wastewater treatment plant sludge and nearby coastal sediment in an industrial area in China. Appl Microbiol Biotechnol 99(10):4495–4507

    Article  CAS  Google Scholar 

  • Zheng YL, Hou LJ, Liu M, Lu M, Zhao H, Yin GY, Zhou JL (2013) Diversity, abundance, and activity of ammonia-oxidizing bacteria and archaea in Chongming eastern intertidal sediments. Appl Microbiol Biotechnol 97(18):8351–8363

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was jointly financed by National Natural Science Foundation of China (No. 41301258, 41230856), Anhui Provincial Natural Science Foundation (No. 1408085QC68), Crop subject high teacher term construction in Anhui province and Special Fund for Agro-scientific Research in the Public Interest (No. 201503121–02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaorong Dong.

Additional information

Responsible editor: Zhihong Xu

He Song and Zhao Che contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

Rarefaction curves for archaeal (a) and bacterial (b) amoA gene sequences amoA genes in greenhouse soils under different years of vegetable cultivation. -1, -2, -3 for each cropping year represent three replicates. (DOCX 296 kb)

Supplementary Fig. 2

Heat map illustrating the relative abundance of AOB amoA gene OTUs (> 2 % relative abundance) in greenhouse soils under different years of vegetable cultivation. (DOCX 37 kb)

Supplementary Fig. 3

Numbers of dominant OTUs (> 5 % relative abundance) for bacterial amoA in greenhouse soils under different years of vegetable cultivation; values are means ± SE (n = 3). (DOCX 86 kb)

Supplementary Fig. 4

Heat map illustrating the relative abundance of AOA amoA gene OTUs (> 2 % relative abundance) in greenhouse soils under different years of vegetable cultivation. (DOCX 38 kb)

Supplementary Fig. 5

Numbers of dominant OTUs (> 5 % relative abundance) for archaeal amoA in greenhouse soils under different years of vegetable cultivation; values are means ± SE (n = 3). (DOCX 76 kb)

Supplementary Fig. 6

Canonical correspondence analysis between community structure of AOA (a) or AOB (b) and soil characteristics (DOCX 48 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, H., Che, Z., Cao, W. et al. Changing roles of ammonia-oxidizing bacteria and archaea in a continuously acidifying soil caused by over-fertilization with nitrogen. Environ Sci Pollut Res 23, 11964–11974 (2016). https://doi.org/10.1007/s11356-016-6396-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-6396-8

Keywords

Navigation