Skip to main content

Advertisement

Log in

EDTA enhanced plant growth, antioxidant defense system, and phytoextraction of copper by Brassica napus L.

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Copper (Cu) is an essential micronutrient for normal plant growth and development, but in excess, it is also toxic to plants. The present study investigated the influence of ethylenediaminetetraacetic acid (EDTA) in enhancing Cu uptake and tolerance as well as the morphological and physiological responses of Brassica napus L. seedlings under Cu stress. Four-week-old seedlings were transferred to hydroponics containing Hoagland’s nutrient solution. After 2 weeks of transplanting, three levels (0, 50, and 100 μM) of Cu were applied with or without application of 2.5 mM EDTA and plants were further grown for 8 weeks in culture media. Results showed that Cu alone significantly decreased plant growth, biomass, photosynthetic pigments, and gas exchange characteristics. Cu stress also reduced the activities of antioxidants, such as superoxide dismutase (SOD), peroxidase (POD), ascorbate peroxidase (APX), and catalase (CAT) along with protein contents. Cu toxicity increased the concentration of reactive oxygen species (ROS) as indicated by the increased production of malondialdehyde (MDA) and hydrogen peroxide (H2O2) in both leaves and roots. The application of EDTA significantly alleviated Cu-induced toxic effects in B. napus, showing remarkable improvement in all these parameters. EDTA amendment increased the activity of antioxidant enzymes by decreasing the concentrations of MDA and H2O2 both in leaves and roots of B. napus. Although, EDTA amendment with Cu significantly increased Cu uptake in roots, stems, and leaves in decreasing order of concentration but increased the growth, photosynthetic parameters, and antioxidant enzymes. These results showed that the application of EDTA can be a useful strategy for phytoextraction of Cu by B. napus from contaminated soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aebi H (1984) Catalase in vitro methods. Enzymol 105:121–126

    Article  CAS  Google Scholar 

  • Ali B, Wang B, Ali S, Ghani MA, Hayat MT, Yang C, Xu L, Zhou WJ (2013) 5-aminolevulinic acid ameliorates the growth, photosynthetic gas exchange capacity, and ultrastructural changes under cadmium stress in Brassica napus L. J Plant Growth Regul 32:604–614

    Article  CAS  Google Scholar 

  • Azhar N, Ashraf MY, Hussain M, Hussain F (2006) Phytoextraction of lead (Pb) by EDTA application through sunflower (Helianthus annuus L.) cultivation: seedling growth studies. Pak J Bot 38(5):1551–1560

    Google Scholar 

  • Azooz MM, Abou-Elhamd MF, Al-Fredan MA (2012) Biphasic effect of copper on growth, proline, lipid peroxidation and antioxidant enzyme activities of wheat (Triticum aestivum cv. Hasaawi) at early growing stage. Aust J Crop Sci 6:688–694

    CAS  Google Scholar 

  • Bareen FE (2012) Chelate assisted phytoextraction using oil seed brassicas. Environ Pollut 21:289–311

    Article  Google Scholar 

  • Bradford, Marion M (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Bbiochem 72:248–254

  • Chance B, Maehly A (1955) Assay of catalases and peroxidases. Methods Enzymol 2:764–775

    Article  Google Scholar 

  • Chigbo C, Batty L (2013) Effect of EDTA and citric acid on phytoremediation of Cr-B [a] P-co contaminated soil. Environ Sci Pollut Res 20(12):8955–8963

    Article  CAS  Google Scholar 

  • Cuypers A, Vangronsveld J, Clijsters H (2000) Biphasic effect of copper on the ascorbate- glutathione pathway in primary leaves of Phaseolus vulgaris seedlings during the early stages of metal assimilation. Physiol Plant 110:512–517

    Article  CAS  Google Scholar 

  • Dhindsa RS, Plumb-Dhindsa PAMELA, Thorpe TA (1981) Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J Exp Bot 32(1):93–101

    Article  CAS  Google Scholar 

  • Dionisio-Sese ML, Tobita S (1998) Antioxidant responses of rice seedlings to salinity stress. Plant Sci 135:1–9

    Article  CAS  Google Scholar 

  • Dixit V, Pandey V, Shyam R (2001) Differential antioxidative responses to cadmium in roots and leaves of pea (Pisum sativum). J Exp Bot 52:1101–1109

    Article  CAS  Google Scholar 

  • Ehsan S, Ali S, Noureen S, Farid M, Shakoor MB, Aslam A, Bharwana SA, Tauqeer HM (2013) Comparative assessment of different heavy metals in urban soil and vegetables irrigated with sewage/industrial waste water. Ecoterra J Environ Res Prot 35:37–53

  • Ehsan S, Ali S, Noureen S, Mehmood K, Farid M, Ishaque W, Shakoor MB, Rizwan M (2014) Citric acid assisted phytoremediation of Cd by Brassica napus L. Ecotoxicol Environ Safe 106:164–172

    Article  CAS  Google Scholar 

  • Evangelou VP, Marsi M (2001) Composition and metal ion complexation behavior of humic fractions derived from corn tissue. Plant Soil 229:13–24

    Article  CAS  Google Scholar 

  • Evangelou MWH, Bauer U, Ebel M, Schaeffer A (2007) The influence of EDDS and EDTA on the uptake of heavy metals of Cd and Cu from soil with tobacco Nicotiana tabacum. Chemosphere 68(2):345–353

    Article  CAS  Google Scholar 

  • Farid M, Ali S, Shakoor MB, Bharwana SA, Rizvi H, Ehsan S, Tauqeer HM, Iftikhar U, Hannan F (2013) EDTA assisted phytoremediation of cadmium, lead and zinc. Int J Agron Plant Prod 4(11):2833–2846

    CAS  Google Scholar 

  • Feigl G, Kumar D, Lehotai N, Tugyi N, Molnár Á, Ördög A, Kolbert Z (2013) Physiological and morphological responses of the root system of Indian mustard Brassica juncea L and rapeseed (Brassica napus L.) to copper stress. Ecotoxicol Environ Saf 94:179–189

    Article  CAS  Google Scholar 

  • Gajewska E, SkŁodowska M (2010) Differential effect of equal copper, cadmium and nickel concentration on biochemical reactions in wheat seedlings. Ecotoxicol Environ Saf 73(5):996–1003

    Article  CAS  Google Scholar 

  • Giannopolitis CN, Ries SK (1977) Superoxide dismutases I. Occurrence in higher plants. Plant Physiol 59:309–314

    Article  CAS  Google Scholar 

  • Gunawardena D, Ash S, McMillan C, Avants B, Gee J, Grossman M (2010) Why are patients with progressive non fluent aphasia non fluent. Neurol 75(7):588–594

    Article  CAS  Google Scholar 

  • Gupta DK, Nicolosoa FT, Schetingerb MRC, Rossatoa LV, Pereirab LB, Castroa GY, Srivastavac S, Tripathi RD (2009) Antioxidant defense mechanism in hydroponically grown Zea mays seedlings under moderate lead stress. J Hazard Mater 172:479–484

    Article  CAS  Google Scholar 

  • Han F, Shan XQ, Zhang J, Xie YN, Pei ZJ, Zhang SZ, Zhu YG, Wen B (2005) Organic acids promote the uptake of lanthanum by barley roots. New Phytol 165:481–492

    Article  CAS  Google Scholar 

  • Haouari CC, Nasraoui AH, Bouthour D, Houda MD, Daieb CB, Mnai J, Gouia H (2012) Response of tomato (Solanum lycopersicon) to cadmium toxicity: growth, element uptake, chlorophyll content and photosynthesis rate. Afr J Plant Sci 6:1–7

    CAS  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts: I. Kinetics stoichiometry fat acid peroxidation. Arch Biochem Biophys 125(1):189–198

    Article  CAS  Google Scholar 

  • Jadia CD, Fulekar MH (2008) Phytoremediation: the application of vermin compost to remove zinc, cadmium, copper, nickel and lead by sunflower plant. Environ Eng Manag J 7:547–558

    CAS  Google Scholar 

  • Kambhampati MS (2013) EDTA enhanced phytoremediation of copper contaminated soils using chickpea (Cicer aeritinum L.). Bull Environ Contemp Toxicol 91(3):310–313

    Article  CAS  Google Scholar 

  • Kanwal U, Ali S, Shakoor MB, Farid M, Hussain S, Yasmeen T, Adrees M, Bharwana SA, Abbas F (2014) EDTA ameliorates phytoextraction of lead and plant growth by reducing morphological and biochemical injuries in Brassica napus L. under lead stress. Environ Sci Pollut Res. 21:9899–9910

  • Kupper H, ˇSetl’ık I, Setlikov’a E, Ferimazova N, Spiller M, K¨upper FC (2003) Copper induced inhibition of photosynthesis: limiting steps of in vivo copper chlorophyll formation in Scenedesmus quadricauda. Funct Plant Biol 30(12):1187–1196

    Article  Google Scholar 

  • Legros S, Chaurand P, Rose J, Masion A, Briois V, Ferrasse JH, Macary HS, Bottero JY, Doelsch E (2010) Investigation of copper speciation in pig slurry by a multi technique approach. Environ Sci Technol 44:6926–6932

    Article  CAS  Google Scholar 

  • Lichtenthaler HK (1987) Chlorophylls and carotenoids—pigments of photosynthetic biomembranes In: Colowick SP, Kaplan NO (ed.): Methods Enzymol 148:350–382

  • Macfarlane GR (2003) Chlorophyll a fluorescence as a potential biomarker of zinc stress in the grey mangrove, Avicennia Marina. Bull Environ Contam Toxicol 70:90–96

    Article  CAS  Google Scholar 

  • Mackie KA, Müller T, Kandeler E (2012) Remediation of copper in vineyards—a mini review. Environ Pollut 167:16–26

    Article  CAS  Google Scholar 

  • Mani D, Kumar C, Patel NK (2014) Hyperaccumulator oilcake manure as an alternative for chelate-induced phytoremediation of heavy metals contaminated alluvial soils. Int J Phytorem (Accepted in press)

  • Marschner H (1995) Mineral nutrition in higher plants, 2nd edn. Academic, London

    Google Scholar 

  • Meers E, Tack FMG, Van Slycken S, Ruttens A, Du Laing G, Vangronsveld J, Verloo MG (2008) Chemically assisted phytoextraction: a review of potential soil amendments for increasing plant uptake of heavy metals. Int J Phytorem 10(5):390–414

    Article  CAS  Google Scholar 

  • Meng H, Hua S, Shamsi IH, Jilani G, Li Y, Jiang L (2009) Cd-induced stress on the seed germination and seedling growth of Brassica napus L. and its alleviation through exogenous plant growth regulators. Plant Growth Regul 58:47–59

    Article  CAS  Google Scholar 

  • Metwally A, Safronova vI, Bellimov AA, Dietz KJ (2005) Genotypic variation of the response to cadmium toxicity in Pisum sativum L. J Exp Bot 56:167–178

  • Metzner H, Rau R, Senger H (1965) Untersuchungen zur synchronisierbarkeit einzelner pigmentmangel-mutanten von Chlorella. Planta 65:186–194

    Article  CAS  Google Scholar 

  • Mishra S, Srivastava S, Tripathi RD, Govindarajan R, Kuriakose SV, Prasad MNV (2006) Phytochelatin synthesis and response of antioxidants during cadmium stress in Bacopa monniera. Plant Physiol Biochem 44:25–37

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7(9):405–410

    Article  CAS  Google Scholar 

  • Monnet F, Bordas F, Deluchat V, Baudu M (2006) Toxicity of copper excess on the lichen Dermatocarponluridum: antioxidant enzyme activities. Chemosphere 65:1806–1813

    Article  CAS  Google Scholar 

  • Muhammad D, Chen F, Zhao J, Zhang G, Wu F (2009) Comparison of EDTA-and citric acid-enhanced phytoextraction of heavy metals in artificially metal contaminated soil by Typhaangustifolia. Int J Phytorem 11:558–574

    Article  CAS  Google Scholar 

  • Nagajyoti PC, Lee KD, Sreekanth TVM (2010) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8(3):199–216

    Article  CAS  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Nor M, Cheng H (1986) Chemical speciation and bioavailability of Cu: uptake and accumulation by Eichornia. Environ Toxicol Chem 5:941–947

    Article  CAS  Google Scholar 

  • Park J, Kim JY, Kim KW (2012) Phytoremediation of soil contaminated with heavy metals using Brassica napus. Geo Syst Eng 15:10–18

    Google Scholar 

  • Peško M, Kráľová K (2013) Physiological response of Brassica napus L. plants to Cu (II) treatment. Proc ECO Pol 7.1:1

    Google Scholar 

  • Pilon-Smits E (2005) Phytoremediation. Annu Rev Plant Biol 56:15–39

    Article  CAS  Google Scholar 

  • Quartacci M, Pinzino C, Sgherri C, DallaVeuhia F, Navari-Izz F (2000) Growth in excess copper induces changes in the lipid composition and fluidity of PS-II enriched membrane in wheat. Physiol Plant 108:87–93

    Article  CAS  Google Scholar 

  • Raziuddin UF, Hassan G, Akmal M, Shah SS, Mohammad F, Shafi M, Bakht J, Zhou W (2011) Effects of cadmium and salinity on growth and photosynthesis parameters of Brassica species. Pak J Bot 1:333–340

    Google Scholar 

  • Salt DE, Blaylock M, Kumar NPBA, Dushenkov V, Ensley BD, Chet I, Raskin I (1995) Phytoremediation: a novel strategy for removal of toxic metals from the environment using plants. Biotechnol 13:468–474

    Article  CAS  Google Scholar 

  • Shakoor MB, Ali S, Farid M, Farooq MA, Tauqeer HM, Iftikhar U, Hannan F, Bharwana SA (2013) Heavy metal pollution, a global problem and its remediation by chemically enhanced phytoremediation: a review. J Biodivers Environ Sci 3(3):12–20

    Google Scholar 

  • Singh RP, Agrawal M (2010) Variations in heavy metal accumulation, growth and yield of rice plants grown at different sewage sludge amendment rates. Ecotoxicol Environ Saf 73:632–641

    Article  CAS  Google Scholar 

  • Szczygłowskan M, Piekarska A, Konieczka P, Namiesnik J (2011) Use of brassica plants in the phytoremediation and biofumigation processes. Int J Mol Sci 12:7760–7771

    Article  Google Scholar 

  • Székely A, Balota DA, Duchek JM, Nemoda Z, Vereczkei A, Sasvari Szekely M (2011) Genetic factors of reaction time performance: DRD4 7 repeat allele associated with slower responses. Genes Brain Behavior 10:129–136

  • Vamerali T, Bandiera M, Mosca G (2010) Field crops for phytoremediation of metal-contaminated land. Environ Chem Lett 8:1–17

    Article  CAS  Google Scholar 

  • Vangronveld J, Herzig R, Weyens N, Boulet J, Adriaensen K, Ruttens A, Thewys T, Vassilev A, Meers E, Nehnevajova E, van der Lelie D, Mench M (2009) Phytoremediation of contaminated soils and groundwater: lessons from the field. Environ Sci Pollut Res 16:765–794

    Article  Google Scholar 

  • Wan G, Najeeb U, Jilani G, Naeem MS, Zhou W (2011) Calcium invigorates the cadmium-stressed Brassica napus L. plants by strengthening their photosynthetic system. Environ Sci Pollut Res 18(9):1478–1486

    Article  CAS  Google Scholar 

  • Wenzel WW, Unterbrunner R, Sommer P, Sacco P (2003) Chelate assisted phytoextraction using canola (Brassica napus L) in outdoors pot and lysimeter experiments. Plant Soil 249:83–96

    Article  CAS  Google Scholar 

  • Xiong ZT, Liu C, Geng B (2006) Phytotoxic effects of copper on nitrogen metabolism and plant growth in Brassica pekinensis Rupr. Ecotoxicol Environ Saf 64(3):273–280

    Article  CAS  Google Scholar 

  • Yang YN, Wei X, Lu J, You J, Wang W, Shi R (2010) Lead induced phytotoxicity mechanism involved in seed germination and seedling growth of wheat (Triticum aestivum L.). Ecotoxicol Environ Saf 73:1982–1987

    Article  CAS  Google Scholar 

  • Yruela I (2005) Copper in plants: acquisition transport and interactions. Funct Plant Boil 36:409–430

    Article  Google Scholar 

  • Zhang J, Kirkham MB (1994) Drought-stress-induced changes in activities of superoxide dismutase, catalase, and peroxidase in wheat species. Plant Cell Physiol 35(5):785–791

    CAS  Google Scholar 

  • Zhang H, Xia Y, Wang G, Shen Z (2007) Excess copper induces accumulation of hydrogen peroxide and increases lipid peroxidation and total activity of copper-zinc superoxide dismutase in roots of Elsholtzia Haichowensis. Planta 227(2):465–475

    Article  Google Scholar 

  • Zhang H, Li YH, Hu LY, Wang SH, Zhang FQ, Hu KD (2008) Effects of exogenous nitric oxide donor on antioxidant metabolism in wheat leaves under aluminum stress. Russ J Plant Physiol 55:469–474

    Article  CAS  Google Scholar 

  • Zhao Z, Xi M, Jiang G, Liu X, Baia Z, Huang Y (2010) Effects of IDSA, EDDS and EDTA on heavy metals accumulation in hydroponically grown maize (Zea mays L.). J Hazard Mater 181:455–459

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shafaqat Ali.

Additional information

Responsible editor: Elena Maestri

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Habiba, U., Ali, S., Farid, M. et al. EDTA enhanced plant growth, antioxidant defense system, and phytoextraction of copper by Brassica napus L.. Environ Sci Pollut Res 22, 1534–1544 (2015). https://doi.org/10.1007/s11356-014-3431-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-3431-5

Keywords

Navigation