Skip to main content

Advertisement

Log in

Aerosol optical and physical properties during winter monsoon pollution transport in an urban environment

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

We analysed aerosol optical and physical properties in an urban environment (Kolkata) during winter monsoon pollution transport from nearby and far-off regions. Prevailing meteorological conditions, viz. low temperature and wind speed, and a strong downdraft of air mass, indicated weak dispersion and inhibition of vertical mixing of aerosols. Spectral features of WinMon aerosol optical depth (AOD) showed larger variability (0.68–1.13) in monthly mean AOD at short-wavelength (SW) channels (0.34–0.5 μm) compared to that (0.28–0.37) at long-wavelength (LW) channels (0.87–1.02 μm), thereby indicating sensitivity of WinMon AOD to fine aerosol constituents and the predominant contribution from fine aerosol constituents to WinMon AOD. WinMon AOD at 0.5 μm (AOD 0. 5) and Angstrom parameter ( α) were 0.68–0.82 and 1.14–1.32, respectively, with their highest value in December. Consistent with inference from spectral features of AOD, surface aerosol loading was primarily constituted of fine aerosols (size 0.23–3 μm) which was 60–70 % of aerosol 10- μm (size 0.23–10 μm) concentration. Three distinct modes of aerosol distribution were obtained, with the highest WinMon concentration at a mass median diameter (MMD) of 0.3 μm during December, thereby indicating characteristics of primary contribution related to anthropogenic pollutants that were inferred to be mostly due to contribution from air mass originating in nearby region having predominant emissions from biofuel and fossil fuel combustion. A relatively higher contribution from aerosols in the upper atmospheric layers than at the surface to WinMon AOD was inferred during February compared to other months and was attributed to predominant contribution from open burning emissions arising from nearby and far-off regions. A comparison of ground-based measurements with Moderate Resolution Imaging Spectroradiometer (MODIS) data showed an underestimation of MODIS AOD and α values for most of the days. Discrepancy in relative distribution of fine and coarse mode of MODIS AOD was also inferred.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Angstrom A (1964) The parameters of atmospheric turbidity. Tellus 16:64–75

    Article  Google Scholar 

  • Arino O, Simon M, Piccolini I, Rosaz JM (2001) The ERS-ATSR 2 World Fire Atlas and the ERS 2 ATSR 2 World Burnt Surface Atlas projects. Paper presented at 8th ISPRS conference on physical measurement and signatures in remote sensing, Europe Space Agency, Aussois

  • Babu SS, Gogoi MM, Kumar VHA, Nair VS, Moorthy KK (2012) Radiative properties of Bay of Bengal aerosols: spatial distinctiveness and source impacts. J Geophys Res 17:D06213. doi:10.1029/2011JD017355

    Google Scholar 

  • Babu SS, Satheesh SK, Moorthy KK (2002) Aerosol radiative forcing due to enhanced black carbon at an urban site in India. Geophys Res Lett 29(18):1880. doi:10.1029/2002GL015826

    Article  Google Scholar 

  • Benas N, Chrysoulakis N, Giannakopoulou G (2013) Validation of MERIS/AATSR synergy algorithm for aerosol retrieval against globally distributed AERONET observations and comparison with MODIS aerosol product. Atmos Res 132-133:102–113

    Article  Google Scholar 

  • Burkart J, Steiner G, Reischl G, Moshammer H, Neuberger M, Hitzenberger R (2010) Characterizing the performance of two optical particle counters (Grimm OPC1.108 and OPC1.109) under urban aerosol conditions. J Aerosol Sci 41:953–962

    Article  CAS  Google Scholar 

  • Chakraborty A, Satheesh SK, Nanjundiah RS, Srinivasan J (2004) Impact of absorbing aerosols on the simulation of climate over the Indian region in an atmospheric general circulation model. Ann Geophys 22:1421–1434

    Article  Google Scholar 

  • Charlson RJ, Schwartz SE, Hales JM, Cess RD, Coakley JD, Hansen JE, Hofmann DJ (1992) Climate forcing by anthropogenic aerosols. Science 255:423–430

    Article  CAS  Google Scholar 

  • Choudhry P, Misra A, Tripathi SN (2012) Study of MODIS derived AOD at three different locations in the Indo Gangetic Plain: Kanpur, Gandhi College and Nainital. Ann Geophys 30:1479–1493. doi:10.5194/angeo-30-1479-2012

    Article  Google Scholar 

  • Das SK, Jayaraman A, Misra A (2008) Fog-induced variations in aerosol optical and physical properties over the Indo-Gangetic Basin and impact to aerosol radiative forcing. Ann Geophys 26:1345–1354

    Article  Google Scholar 

  • Draxler RR, Hess GD (1998) An overview of the HYSPLIT-4 modeling system for trajectories, dispersion and deposition. Aust Meteorol Mag 47:295–308

    Google Scholar 

  • Eck TF, Holben BN, Reid JS, Dubovik O, Smirnov A, O’Neill NT, Slutsker I, Kinne S (1999) Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols. J Geophys Res 104:31333–31349. doi:10.1016/S0048-9697(99)00093-5

    Article  Google Scholar 

  • Erwin KL (2009) Wetlands and global climate change: the role of wetland restoration in a changing world. Wetl Ecol Manag 17:71–84

    Article  Google Scholar 

  • Forster P, Ramaswamy V, Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R, Fahey DW, Haywood J, Lean J, Lowe DC, Myhre G, Nganga J, Prinn R, Raga G, Schulz M, Dorland RV (2007) Changes in atmospheric constituents and in radiative forcing. Climate change 2007: the physical science basis. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 186–217

    Google Scholar 

  • Ganguly D, Jayaraman A, Gadhavi H (2006a) Physical and optical properties of aerosols over an urban location in western India: seasonal variabilities. J Geophys Res 111:D24. doi:10.1029/2006JD007392

  • Ganguly D, Jayaraman A, Rajesh TA, Gadhavi H (2006b) Wintertime aerosol properties during foggy and nonfoggy days over urban center Delhi and their implications for shortwave radiative forcing. J Geophys Res 111:D15217. doi:10.1029/2005JD007029

    Article  Google Scholar 

  • Ge JM, Su J, Fu Q, Ackerman TP, Huang JP (2011) Dust aerosol forward scattering effects on ground-based aerosol optical depth retrievals. J Quant Spectrosc Radiat Transf 112:310–319

    Article  CAS  Google Scholar 

  • Gerasopoulos E, Koulouri E, Kalivitis N, Kouvarakis G, Saarikoski S, Makela T, Hillamo R, Mihalopoulos N (2007) Size-segregated mass distributions of aerosols over Eastern Mediterranean: seasonal variability and comparison with AERONET columnar size-distributions. Atmos Chem Phys 7:2551–2561

    Article  CAS  Google Scholar 

  • Grimm H, Eatough DJ (2009) Aerosol measurement: the use of optical light scattering for the determination of particulate size distribution, and particulate mass, including the semi-volatile fraction. J Air Waste Manag Assoc 59:101–107. doi:10.3155/1047-3289.59.1.101

    Article  CAS  Google Scholar 

  • Hegerl GC, Cubasch U (1996) Greenhouse gas induced climate change. Environ Sci Pollut Res 3:99–102. doi:10.1007/BF02985499

    Article  CAS  Google Scholar 

  • Hess M, Koepke P, Schult I (1998) Optical properties of aerosols and clouds: the software package OPAC. Bull Am Meteorol Soc 79:831–844

    Article  Google Scholar 

  • Hinds WC (1999) Aerosol technology: properties, behavior, and measurement of airborne particles, 2nd edn. Wiley, New York

    Google Scholar 

  • Ichoku C, Levy R, Kaufman YJ, Remer LA, Li R-R, Martins VJ, Holben BN, Abuhassan N, Slutsker I, Eck TF, Pietras C (2002) Analysis of the performance characteristics of the five-channel Microtops II Sun photometer for measuring aerosol optical thickness and precipitable water vapor. J Geophys Res 107:AAC5-1–AAC5-17. doi:10.1029/2001JD001302

    Google Scholar 

  • Ichoku C, Remer LA, Kaufman YJ, Levy R, Chu DA, Tanre D, Holben BN (2003) MODIS observation of aerosols and estimation of aerosol radiative forcing over southern Africa during SAFARI 2000. J Geophys Res 108:16. doi:10.1029/2002JD002366

    Google Scholar 

  • Jethva H, Satheesh SK, Srinivasan J (2007) Assessment of second-generation MODIS aerosol retrieval (collection 005) at Kanpur, India. Geophys Res Lett 34:L19802. doi:10.1029/2007GL029647

    Article  Google Scholar 

  • Kaufman YJ, Tanre D, Boucher O (2002) A satellite view of aerosols in the climate system. Nature 419:215–223

    Article  CAS  Google Scholar 

  • Kaufman YJ, Tanre D, Remer L, Vermote E, Chu A, Holben BN (1997) Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer. J Geophys Res 102:17051–17067

    Article  CAS  Google Scholar 

  • Kedia S, Ramachandran S, Kumar A, Sarin MM (2010) Spatiotemporal gradients in aerosol radiative forcing and heating rate over Bay of Bengal and Arabian Sea derived on the basis of optical, physical, and chemical properties. J Geophys Res 115:16. doi:10.1029/2009JD013136

    Google Scholar 

  • King MD, Kaufman YJ, Tanre D, Nakajima T (1999) Remote sensing of tropospheric aerosols from space: past, present, and future. Bull Amer Meteorol Soc 80:2229–2259

    Article  Google Scholar 

  • Krishnamurti TN, Chakraborty A, Martin A, Lau WK, Kim K-M, Sud Y, Walker G (2009) Impact of Arabian Sea pollution on the Bay of Bengal winter monsoon rains. J Geophys Res 114:D06213. doi:10.1029/2008JD010679

    Google Scholar 

  • Latha KM, Badarinath K (2004) Characterization of aerosols and its radiative impacts over urban and rural environments—a case study from Hyderabad and Srisailam. Environ Pollut 132:463–468. doi:10.1016/j.envpol.2004.05.010

    Article  Google Scholar 

  • Leon J-F, Chazette P, Dulac F, Pelon J, Flamant C, Bonazzola M, Foret G, Alfaro S, Cachier H, Cautenet S, Hamonou E, Gaudichet A, Gomes L, Rajot J, Lavenu F, Inamdar S, Sarode P, Kadadevarmath J (2001) Large scale advection of continental aerosols during INDOEX. J Geophys Res 106:28,427–28,440

    Article  Google Scholar 

  • Levy R, Remer L, Martins JV, Kaufman YJ, Plana-Fattori A, Redemann J, Wenny B (2005) Evaluation of the MODIS aerosol retrievals over ocean and land during CLAMS. J Atmos Sci 62:974–992. doi:10.1016/S0048-9697(99)00093-5

    Article  Google Scholar 

  • Levy R, Remer L, Dubovik O (2007) Global aerosol optical properties and application to Moderate Resolution Imaging Spectroradiometer aerosol retrieval over land. J Geophys Res 112:D13210. doi:10.1029/2006JD0078151

    Google Scholar 

  • Levy RC, Remer LA, Kleidman RG, Mattoo S, Ichoku C, Kahn R, Eck TF (2010) Global evaluation of the Collection 5 MODIS dark-target aerosol products over land. Atmos Chem Phys 10:10399–10420. doi:10.5194/acp-10-10399-2010

    Article  CAS  Google Scholar 

  • Liousse C, Penner JE, Chuang C, Walton JJ, Eddleman H, Cachier H (1996) A global three-dimensional model study of carbonaceous aerosols. J Geophys Res 101:19411–19432

    Article  CAS  Google Scholar 

  • Mischenko MI, Geogdzhayev IV, Cairns B, Rossow WB, Lacis AA (1999) Aerosols retrievals over the oceans by use of channels 1 and 2 AVHRR data: sensitivity analysis and preliminary results. Appl Opt 38:7325–7341

    Article  Google Scholar 

  • Misra A, Jayaraman A, Ganguly D (2008) Validation of MODIS derived aerosol optical depth over Western India. J Geophys Res 113:D04203. doi:10.1029/2007JD009075

    Google Scholar 

  • Moorthy KK, Saha A, Prasad B, Niranjan K, Jhurry D, Pillai PS (2001) Aerosol optical depths over peninsular India and adjoining oceans during the INDOEX campaign: spatial, temporal, and spectral characteristics. J Geophys Res 106:28539–28554

    Article  Google Scholar 

  • Morys M, Mims FM III, Hagerup S, Anderson SE, Baker A, Kia J, Walkup T (2001) Design, calibration, and performance of MICROTOPS II handheld ozone monitor and Sun photometer. J Geophys Res 106:14573–14582

    Article  Google Scholar 

  • Nair VS, et al. (2007) Wintertime aerosol characteristics over the Indo-Gangetic Plain (IGP): impacts of local boundary layer processes and long-range transport. J Geophys Res 112:D13205. doi:10.1029/2006JD008099

    Google Scholar 

  • Niranjan K, Sreekanth V, Madhavan BL, Moorthy KK (2006) Wintertime aerosol characteristics at a north Indian site Kharagpur in the Indo-Gangetic plains located at the outflow region into Bay of Bengal. J Geophys Res 111:D24209. doi:10.1029/2006JD007635

    Article  Google Scholar 

  • Penner J, Hegg D, Leaitch R (2001) Unraveling the role of aerosols in climate change. Environ Sci Technol 35:332A–340A

    Article  CAS  Google Scholar 

  • Pilinis C, Pandis SN, Seinfeld JH (1995) Sensitivity of direct climate forcing by atmospheric aerosols to aerosol size and composition. J Geophys Res 100:18739–18754

    Article  Google Scholar 

  • Prasad AK, Singh RP (2007) Comparison of MISR-MODIS aerosol optical depth over the Indo-Gangetic basin during the winter and summer seasons (2000-2005). Remote Sens Environ 107:109–119

    Article  Google Scholar 

  • Ramachandran S, Jayaraman A (2002) Premonsoon aerosol mass loadings and size distributions over the Arabian Sea and the Tropical Indian Ocean. J Geophys Res 107:4738. doi:10.1029/2002JD002386

    Article  Google Scholar 

  • Ramachandran S, Kedia S (2012) Radiative effects of aerosols over Indo-Gangetic plain: environmental (urban vs. rural) and seasonal variations. Environ Sci Pollut Res 19:2159–2171. doi:10.1007/s1356-011-0715-x

    Article  CAS  Google Scholar 

  • Ramanathan V, Carmichael G (2008) Global and regional climate changes due to black carbon. Nat Geosci 1:221–227. doi:10.1038/ngeo156

    Article  CAS  Google Scholar 

  • Ramanathan V, Li F, Ramana MV, Praveen PS, Kim D, Corrigan CE, Nguyen H, Stone EA, Schauer JJ, Carmichael GR, Adhikary B, Yoon SC (2007) Atmospheric brown clouds: hemispherical and regional variations in long-range transport, absorption, and radiative forcing. J Geophys Res 112:D22S21. doi:10.1029/2006JD008124

    Google Scholar 

  • Ramaswamy V, Boucher O, Haigh J, Haywood DHJ, Myhre G, Nakajima T, Shi GY, Solomon S, et al (2001) Radiative forcing of climate change. Climate change 2001: the scientific basis. In: Houghton JT, et al (eds) Contribution of working group I to the third assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 349–416

    Google Scholar 

  • Remer LA, Kaufman YJ, Tanre D, Mattoo S, Chu DA, Martins JV, Li R-R, Ichoku C, Levy RC, Kleidman RG, Eck TF, Vermote E, Holben BN (2005) The MODIS aerosol algorithm, products, and validation. J Atmos Sci 62:947–973

    Article  Google Scholar 

  • Remer LA, Kleidman RG, Levy RC, Kaufman YJ, Tanre D, Mattoo S, Martins JV, Ichoku C, Koren I, Yu H, Holben BN (2008) Global aerosol climatology from the MODIS satellite sensors. J Geophys Res 113:D14S07. doi:10.1029/2007JD009661

    Article  Google Scholar 

  • Rose D, Wehner B, Ketzel M, Engler C, Voigtlander J, Tuch T, Wiedensohler A (2006) Atmospheric number size distributions of soot particles and estimation of emission factors. Atmos Chem Phys 6:1021–1031

    Article  CAS  Google Scholar 

  • Schuster GL, Dubovik O, Holben BN (2006) Angstrom exponent and bimodal aerosol size distributions. J Geophys Res 111:D07207. doi:10.1029/2005JD006328

  • Tanre D, Kaufman YJ, Herman M, Mattoo S (1997) Remote sensing of aerosol properties over oceans using the MODIS/EOS spectral radiances. J Geophys Res 102:16971– 16988

    Article  Google Scholar 

  • Tripathi SN, Dey S, Chandel A, Srivastava S, Singh RP, Holben BN (2005a) Comparison of MODIS and AERONET derived aerosol optical depth over the Ganga Basin, India. Ann Geophys 23:1093–1101

    Article  Google Scholar 

  • Tripathi SN, Dey S, Tare V (2005b) Aerosol black carbon radiative forcing at an industrial city in northern India. Geophys Res Lett 32:L08802. doi:10.1029/2005GL022515

    Google Scholar 

  • Tsigaridis K, Krol M, Dentener FJ, Balkanski Y, Lathiere J, Metzger S, Hauglustaine DA, Kanakidou M (2006) Change in global aerosol composition since preindustrial times. Atmos Chem Phys 6:5143–5162. doi:10.5194/acp-6-5143-2006

    Article  CAS  Google Scholar 

  • Verma S, Venkataraman C, Boucher O, Ramachandran S (2007) Source evaluation of aerosols measured during the Indian Ocean Experiment using combined chemical transport and back trajectory modeling. J Geophys Res 112:D11210. doi:10.1029/2006JD007698

    Article  Google Scholar 

  • Verma S, Venkataraman C, Boucher O (2008) Origin of surface and columnar INDOEX aerosols using source- and region-tagged emissions transport in a general circulation model. J Geophys Res 113:D24211. doi:10.1029/2007JD009538

    Article  Google Scholar 

  • Verma S, Venkataraman C, Boucher O (2011) Attribution of aerosol radiative forcing over India during the winter monsoon to emissions from source categories and geographical regions. Atmos Environ 45:4398–4407

    Article  CAS  Google Scholar 

  • Wang C, Liu Q, Ying N, Wang X, Ma J (2013) Air quality evaluation on an urban scale based on MODIS satellite images. Atmos Res 132–133:22–34. doi:10.1016/j.atmosres.2013.04.011

    Google Scholar 

  • Xie Y, Zhang Y, Xiong X, Qu J, Che H (2011) Validation of MODIS aerosol optical depth product over China using CARSNET measurements. Atmos Res 45:5970–5978. doi:10.1016/j.atmosenv.2011.08.002

    CAS  Google Scholar 

  • Xiong X, Sun J, Bames W, Salomonson V, Esposito J, Erives H, Guenther B (2007) Multiyear On-Orbit calibration and performance of Terra MODIS reflective solar bands. IEEE T Geosci Remote 45:879–889

    Article  Google Scholar 

  • Xiong X, Sun J, Wu A, Chiang K, Esposito J, Erives H, Guenther B (2005) Terra and Aqua MODIS calibration algorithms and uncertainty analysis, sensors, systems, and next-generation satellites IX. In: Proceedings of SPIE, p 5978

  • Zhao M, Heinsch FA, Nemani RR, Running SW (2005) Improvements of the MODIS terrestrial gross and net primary production global data set. Remote Sens Environ 95:164–176

    Article  Google Scholar 

Download references

Acknowledgments

Computing resources and experimental work at Indian Institute of Technology Kharagpur were supported through a grant received from the Department of Science and Technology, Govt. of India. D. Bharath Kumar and Priyadharshini B, research scholars, Civil Engineering Department, IIT-KGP, are acknowledged for their help in extracting fire count data and refining Fig. 1. We acknowledge the support from ECMWF for providing wind field data. The MODIS data used in this study are downloaded from the Atmosphere Archive and Distribution System (LAADS), a part of the NASA’s Goddard Earth Sciences (GES) Data and Information Services Center (DISC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Verma.

Additional information

Responsible editor: Gerhard Lammel

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verma, S., Bhanja, S.N., Pani, S.K. et al. Aerosol optical and physical properties during winter monsoon pollution transport in an urban environment. Environ Sci Pollut Res 21, 4977–4994 (2014). https://doi.org/10.1007/s11356-013-2383-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-013-2383-5

Keywords

Navigation