Skip to main content
Log in

Toxicity of hydroquinone to different freshwater phototrophs is influenced by time of exposure and pH

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The interaction of natural organic matter with phytoplankton communities in freshwater ecosystems is an intensively studied subject matter. Previous studies showed that apparently plant-derived phenols were able to inhibit algal and cyanobacterial growth. Furthermore, it was also assumed that humic substances (HS), which comprise the major part of dissolved organic carbon in freshwater ecosystems, directly interact with freshwater phototrophs. For example, quinoid building blocks of HS were thought to be algicidal. To identify key environmental variable for the toxic action of potential quinone algicides, we tested the toxicity of hydroquinone (HQ) to different eukaryotic and prokaryotic freshwater phototrophs in terms of growth performance and investigated also the effect of HQ oxidation at different pH values on its algicidal potential. It was shown that cyanobacterial species were much more susceptible to hydroquinone than coccal green algal species were, with Microcystis aeruginosa being the most sensitive species by far. In addition, it was obvious that the aging of hydroquinone-stock solution at pH 11 led to polymerization and, by this process, to a total loss of toxicity; whereas the algicidal potential sustained if the polyphenol was kept at pH 7. Since most lakes with heavy blooms of phototrophs possess pH values clearly above 7.0, it is questionable, if polyphenols in general and quinones in particular are the effective chemicals and if litter and straw leachates are applied as means to combat algal and cyanobacterial blooms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Appel HM (1993) Phenolics in ecological interactions—the importance of oxidation. J Chem Ecol 19(7):1521–1552

    Article  CAS  Google Scholar 

  • Bährs H, Steinberg CEW (2012) Impact of two different humic substances on selected coccal green algae and cyanobacteria—changes in growth and photosynthetic performance. Environ Sci Poll Res 19(2):335–346

    Article  Google Scholar 

  • Bährs H, Menzel R, Kubsch G, Stößer R, Putschew A, Heinze T, Steinberg CEW (2012) Does quinone or phenol enrichment of humic substances alter the primary compound from a non-algicidal to an algicidal preparation? Chemosphere 87:1193–1200

    Article  Google Scholar 

  • Cason J (1976) Synthesis of benzoquinones by oxidation. In: Adams R et al (eds) Organic reactions, vol IV. John Wiley, New York, pp 305–361

    Google Scholar 

  • Choe S, Jung IH (2002) Growth inhibition of freshwater algae by ester compounds released from rotted plants. J Ind Eng Chem 8(4):297–304

    CAS  Google Scholar 

  • Dedonder A, van Sumer C (1971) Effect of phenolics and related compounds on growth and respiration of Chlorella vulgaris. Z Pflanzenphysiol 65(1):70–80

    CAS  Google Scholar 

  • DEV (1982) Deutsches Einheitsverfahren zur Wasser-, Abwasser- und Schlammuntersuchung: DIN 38412 - Testverfahren mit Wasserorganismen. Band III

  • Everall NC, Lees DR (1996) The use of barley-straw to control general and blue-green algal growth in a Derbyshire reservoir. Wat Res 30:269–276

    Article  CAS  Google Scholar 

  • Gross EM, Meyer H, Schilling G (1996) Release and ecological impact of algicidal hydrolysable polyphenols in Miriophyllum spicatum. Phytochemistry 41:133–138

    Article  CAS  Google Scholar 

  • Hong Y, Hu HY, Xie X, Sakoda A, Sagehashi M, Li FM (2009) Gramine-induced growth inhibition, oxidative damage and antioxidant responses in freshwater cyanobacterium Microcystis aeruginosa. Aquat Toxicol 91(3):262–269. doi:10.1016/j.aquatox.2008.11.014

    Article  CAS  Google Scholar 

  • Islami HR, Filizadeh Y (2011) Use of barley straw to control nuisance freshwater algae. J Am Water Work Assoc 103 (5):111-+

    Google Scholar 

  • Kim HK, Saifullah KS, Wilson EG, Kricun SDP, Meissner A, Goraler S, Deelder AM, Choi YH, Verpoorte R (2010) Metabolic classification of South American Ilex species by NMR-based metabolomics. Phytochemistry 71(7):773–784

    Article  CAS  Google Scholar 

  • Kostadinova EP, Alipieva KI, Kokubun T, Taskova RM, Handjieva NV (2007) Phenylethanoids, iridoids and a spirostanol saponin from Veronica turrilliana. Phytochemistry 68(9):1321–1326

    Article  CAS  Google Scholar 

  • Lyr H (1965) On the toxicity of oxidized polyphenols. J Phytopath 52:229–240

    Article  CAS  Google Scholar 

  • Martin D, Ridge I (1999) The relative sensitivity of algae to decomposing barley straw. J Appl Phycol 11(3):285–291

    Article  Google Scholar 

  • Meinelt T, Paul A, Phan TM, Zwirnmann E, Kruger A, Wienke A, Steinberg CE (2007) Reduction in vegetative growth of the water mold Saprolegnia parasitica (Coker) by humic substance of different qualities. Aquat Toxicol 83(2):93–103. doi:10.1016/j.aquatox.2007.03.013

    Article  CAS  Google Scholar 

  • Murray D, Jefferson B, Jarvis P, Parsons SA (2010) Inhibition of three algae species using chemicals released from barley straw. Environ Technol 31(4):455–466

    Article  CAS  Google Scholar 

  • Nakai S, Inoue Y, Hosomi M, Murakami A (2000) Myriophyllum spicatum-released allelopathic polyphenols inhibiting growth of blue-green algae Microcystis aeruginosa. Water Res 34(11):3026–3032

    Article  CAS  Google Scholar 

  • Nakai S, Inoue Y, Hosomi M (2001) Algal growth inhibition effects and inducement modes by plant-producing phenols. Water Res 35(7):1855–1859

    Article  CAS  Google Scholar 

  • Newman JR, Barrett PRF (1993) Control of Microcystis aeruginosa by decomposing barley straw. J Aquat Plant Manag 31:203–206

    Google Scholar 

  • OECD (1984) Guideline for testing chemicals: alga, growth inhibition test. Section 2. doi:10.1787/20745761

  • Park MH, Han MS, Ahn CY, Kim HS, Yoon BD, Oh HM (2006) Growth inhibition of bloom-forming cyanobacterium Microcystis aeruginosa by rice straw extract. Lett Appl Microbiol 43(3):307–312. doi:10.1111/j.1472-765X.2006.01951.x

    Article  CAS  Google Scholar 

  • Pillinger JM, Cooper JA, Ridge I (1994) Role of phenolic compounds in the antialgal activity of barley straw. Chem Ecol 20:1557–1569

    Article  CAS  Google Scholar 

  • Pörs Y, Wüstenberg A, Ehwald R (2010) A batch culture method for microalgae and cyanobacteria with CO2 supply through polyethylene membranes. J Phycol 46:825–830

    Article  Google Scholar 

  • Prokhotskaya VY, Steinberg CEW (2007) Differential sensitivity of a coccal green algal and a cyanobacterial species to dissolved natural organic matter (NOM). Environ Sci Poll Res 14(1):11–18

    Article  CAS  Google Scholar 

  • Sachse A, Henrion R, Gelbrecht J, Steinberg CEW (2005) Classification of dissolved organic carbon (DOC) in river systems: influence of catchment characteristics and autochthonous processes. Org Geochem 36(6):923–935

    Article  CAS  Google Scholar 

  • Saito K, Matsumoto M, Sekine T, Murakoshi I, Morisaki N, Iwasaki S (1989) Inhibitory substances from Myriophyllum brasiliense on growth of blue-green algae. J Nat Prod 52(6):1221–1226

    Article  CAS  Google Scholar 

  • Skulberg OM (1967) Algal cultures as a means to assess the fertilizing influence of pollution. Wat Poll Control Fed, Washington, DC:113-127

  • Stanier RY, Kunisawa R, Mandel M, Cohen-Bazire G (1971) Purification and properties of unicellular blue-green algae (Order Chroococcales). Bacteriol Rev 35:171–205

    CAS  Google Scholar 

  • Suau R, Cuevas A, Valpuesta V, Reid MS (1991) Arbutin and sucrose in the leaves of the resurrection plant Myrothamnus flabellifolia. Phytochemistry 30(8):2555–2556

    Article  CAS  Google Scholar 

  • Sun BK, Tanji Y, Unno H (2006) Extinction of cells of cyanobacterium Anabaena circinalis in the presence of humic acid under illumination. Appl Microbiol Biotechnol 72(4):823–828

    Article  CAS  Google Scholar 

  • Tang CS, Waiss AC (1978) Short-chain fatty-acids as growth inhibitors in decomposing wheat straw. J Chem Ecol 4(2):225–232

    Article  CAS  Google Scholar 

  • Waybright TJ, Terlizzi DE, Ferrier MD (2009) Chemical characterization of the aqueous algistatic fraction of barley straw (Hordeum vulgare) inhibiting Microcystis aeruginosa. J Appl Phycol 21(3):333–340

    Article  CAS  Google Scholar 

  • Weidenhamer J, Romeo J (2004) Allelochemicals of Polygonella myriophylla: chemistry and soil degradation. J Chem Ecol 30(5):1067–1082

    Article  CAS  Google Scholar 

  • Wetzel RG (2001) Limnology: Lake and river ecosystems, 3rd edn. Academic, San Diego, 708

    Google Scholar 

  • Xiao X, Chen YX, Liang XQ, Lou LP, Tang XJ (2010) Effects of Tibetan hulless barley on bloom-forming cyanobacterium (Microcystis aeruginosa) measured by different physiological and morphologic parameters. Chemosphere 81(9):1118–1123. doi:10.1016/j.chemosphere.2010.09.001

    Article  CAS  Google Scholar 

  • Zhao P, Tanaka T, Hirabayashi K, Zhang Y-J, Yang C-R, Kouno I (2008) Caffeoyl arbutin and related compounds from the buds of Vaccinium dunalianum. Phytochemistry 69(18):3087–3094

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge help from the people of the stress ecology laboratory, particularly Shumon Chakrabarti for assisting with the laboratory work. We particularly thank the Deutsche Forschungsgemeinschaft for supporting this study (Grant STE 673/17-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanno Bährs.

Additional information

Responsible editor: Thomas Braunbeck

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bährs, H., Putschew, A. & Steinberg, C.E.W. Toxicity of hydroquinone to different freshwater phototrophs is influenced by time of exposure and pH. Environ Sci Pollut Res 20, 146–154 (2013). https://doi.org/10.1007/s11356-012-1132-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-012-1132-5

Keywords

Navigation