Skip to main content
Log in

An In-Situ Investigation of the Strain Partitioning and Failure Across the Layers in a Multi-Layered Steel

  • Research paper
  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

Background

Layered composites consisting of dissimilar materials have shown tremendous improvements in balancing strength with ductility. The details of strain partitioning across the layers, resulting in high ductility even in the brittle layer, are not well understood.

Objective

This study aims to quantify strain partitioning and understand the failure of rolled sheets of alternating austenite and martensite layers through in situ tensile experiments.

Methods

A novel high density speckle pattern with the sample surface as background is generated to resolve strain within and across the interface at the microscale. Simultaneous imaging of both the layered and top surfaces was performed to correlate strain and understand the localization leading to failure. Microstructural analysis and numerical simulations were performed to further understand the role of phase transformation and predict the stress–strain response, respectively.

Results

Both axial and transverse strain field heterogeneity was observed across the layers, with pronounced strain partitioning in the transverse direction and steep gradients near the interfaces. The restriction to the growth of micro-deformation sites in the thin austenitic layers led to a long neck region with local strain as high as 40% compared to the global fracture strain of 20%. During plastic deformation, the austenitic layers underwent phase transformation in the region of high Schmid factor, and the martensitic layers experienced texture evolution.

Conclusions

Small deformation bands within each layer grew and formed macroscopic shear bands leading to fracture. Finally, experimental results were compared with finite element simulations and the rule of mixtures, demonstrating a satisfactory agreement between the different approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Data Availability

Raw images and data generated during the current study are available from the corresponding author upon reasonable request.

Notes

  1. It is learned from the literature that SS420 have BCT structure and metastable austenite phase transforms into BCC martensite. The BCT and BCC are indifferentiable in EBSD results due to similar lattice structure [47].

References

  1. Li Z, Pradeep KG, Deng Y, Raabe D, Tasan CC (2016) Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off. Nature 534(7606):227–230. https://doi.org/10.1038/nature17981

    Article  Google Scholar 

  2. Ritchie RO (2011) The conflicts between strength and toughness. Nat Mater 10(11):817–822. https://doi.org/10.1038/nmat3115

    Article  Google Scholar 

  3. Lesuer DR, Syn CK, Sherby OD, Wadsworth J, Lewandowski JJ, Hunt WH (1996) Mechanical behaviour of laminated metal composites. Int Mater Rev 41(5):169–197. https://doi.org/10.1179/imr.1996.41.5.169

    Article  Google Scholar 

  4. Lhuissier P, Inoue J, Koseki T (2011) Strain field in a brittle/ductile multilayered steel composite. Scr Mater 64(10):970–973. https://doi.org/10.1016/j.scriptamat.2011.01.048

    Article  Google Scholar 

  5. Carreño F, Chao J, Pozuelo M, Ruano OA (2003) Microstructure and fracture properties of an ultrahigh carbon steel-mild steel laminated composite. Scr Mater 48(8):1135–1140. https://doi.org/10.1016/S1359-6462(02)00602-4

    Article  Google Scholar 

  6. Pozuelo M, Carreño F, Carsí M, Ruano OA (2007) Influence of interfaces on the mechanical properties of ultrahigh carbon steel multilayer laminates. Int J Mater Res 98(1):47–52. https://doi.org/10.3139/146.101431

    Article  Google Scholar 

  7. Nambu S, Michiuchi M, Inoue J, Koseki T (2009) Effect of interfacial bonding strength on tensile ductility of multilayered steel composites. Compos Sci Technol 69(11–12):1936–1941. https://doi.org/10.1016/j.compscitech.2009.04.013

    Article  Google Scholar 

  8. Kumar P, Msolli S, Jhon MH, Ramamurty U (2020) Fatigue in multilayered steels. Scr Mater 184:34–40. https://doi.org/10.1016/j.scriptamat.2020.03.052

    Article  Google Scholar 

  9. Pozuelo M, Carreño F, Ruano OA (2006) Delamination effect on the impact toughness of an ultrahigh carbon-mild steel laminate composite. Compos Sci Technol 66(15):2671–2676. https://doi.org/10.1016/j.compscitech.2006.03.018

    Article  Google Scholar 

  10. Koga N, Suzuki M, Umezawa O (2018) Visualization of strain distribution in tensile test of ferrite + martensite multilayered steel sheet by digital image correlation method. Procedia Manuf 15:1656–1662. https://doi.org/10.1016/J.PROMFG.2018.07.271

    Article  Google Scholar 

  11. Xia Y et al (2022) Effects of the layer thickness ratio on the enhanced ductility of laminated aluminum. J Mater Sci Technol 111:256–267. https://doi.org/10.1016/J.JMST.2021.08.093

    Article  Google Scholar 

  12. Seok MY et al (2016) Decoupling the contributions of constituent layers to the strength and ductility of a multi-layered steel. Acta Mater 121:164–172. https://doi.org/10.1016/j.actamat.2016.09.007

    Article  Google Scholar 

  13. Ma E, Zhu T (2017) Towards strength–ductility synergy through the design of heterogeneous nanostructures in metals. Mater Today 20(6):323–331. https://doi.org/10.1016/j.mattod.2017.02.003

    Article  Google Scholar 

  14. Fan J, Zhu L, Lu J, Fu T, Chen A (2020) Theory of designing the gradient microstructured metals for overcoming strength-ductility trade-off. Scr Mater 184:41–45. https://doi.org/10.1016/j.scriptamat.2020.03.045

    Article  Google Scholar 

  15. Syn CK, Lesuer DR, Wolfenstine J, Sherby OD (1993) Layer thickness effect on ductile tensile fracture of ultrahigh carbon steel-brass laminates. Metall Mater Trans A 1993 247 24(7):1647–1653. https://doi.org/10.1007/BF02646603

    Article  Google Scholar 

  16. Zhang Y et al (2022) Tensile and failure behaviors of Cu/Nb nanolaminates: the effects of loading direction, layer thickness, and annealing. Acta Mater 240:118346. https://doi.org/10.1016/J.ACTAMAT.2022.118346

    Article  Google Scholar 

  17. Cao R, Yu X, Feng Z, Ojima M, Inoue J, Koseki T (2016) Effect of annealing temperature and time on microstructure and mechanical properties of multilayered steel composite sheets. Metall Mater Trans A 47(12):6042–6055. https://doi.org/10.1007/s11661-016-3747-5

    Article  Google Scholar 

  18. Koga N, Suzuki M, Umezawa O (2021) Influence of layer thickness on tensile deformation and fracture in the ferrite + martensite fine multi-layered steel sheets. Mater Sci Eng A. https://doi.org/10.1016/j.msea.2020.140599

    Article  Google Scholar 

  19. Inoue J, Nambu S, Ishimoto Y, Koseki T (2008) Fracture elongation of brittle/ductile multilayered steel composites with a strong interface. Scr Mater 59(10):1055–1058. https://doi.org/10.1016/j.scriptamat.2008.07.020

    Article  Google Scholar 

  20. Nambu S, Michiuchi M, Ishimoto Y, Asakura K, Inoue J, Koseki T (2009) Transition in deformation behavior of martensitic steel during large deformation under uniaxial tensile loading. Scr Mater 60(4):221–224. https://doi.org/10.1016/j.scriptamat.2008.10.007

    Article  Google Scholar 

  21. Misra A, Hirth JP, Hoagland RG (2005) Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites. Acta Mater 53(18):4817–4824. https://doi.org/10.1016/j.actamat.2005.06.025

    Article  Google Scholar 

  22. Demkowicz MJ, Beyerlein IJ (2020) The effects of nanoscale confinement on the behavior of metal laminates. Scr Mater 187:130–136. https://doi.org/10.1016/j.scriptamat.2020.05.057

    Article  Google Scholar 

  23. Liu G et al (2019) An investigation on microstructures and mechanical properties of ultra-low cu layer thickness ratio Cu/8011/1060 clads. Metall Mater Trans A 50(12):5866–5876. https://doi.org/10.1007/S11661-019-05483-8

    Article  Google Scholar 

  24. Huang M, Chen JS, Wu H, Fan GH, Geng L (2017) Strengthening and toughening of layered Ti-Al metal composites by controlling local strain contribution. IOP Conf Ser Mater Sci Eng. https://doi.org/10.1088/1757-899X/219/1/012028

    Article  Google Scholar 

  25. Ojima M et al (2012) Stress partitioning behavior of multilayered steels during tensile deformation measured by in situ neutron diffraction. Scr Mater 66(3–4):139–142. https://doi.org/10.1016/j.scriptamat.2011.10.018

    Article  Google Scholar 

  26. Barabash RI et al (2014) Interphase strain gradients in multilayered steel composite from microdiffraction. Metall Mater Trans A 45(1):98–108. https://doi.org/10.1007/s11661-013-2100-5

    Article  Google Scholar 

  27. Robin CJ, Vishnoi A, Jonnalagadda KN (2014) Mechanical behavior and anisotropy of spin-coated SU-8 thin films for MEMS. J Microelectromechanical Syst 23(1):168–180. https://doi.org/10.1109/JMEMS.2013.2264341

    Article  Google Scholar 

  28. Sutton MA, Yan JH, Tiwari V, Schreier HW, Orteu JJ (2008) The effect of out-of-plane motion on 2D and 3D digital image correlation measurements. Opt Lasers Eng 46(10):746–757. https://doi.org/10.1016/J.OPTLASENG.2008.05.005

    Article  Google Scholar 

  29. Schreier HW, Sutton MA (2002) Systematic errors in digital image correlation due to undermatched subset shape functions. Exp Mech 42(3):303–310. https://doi.org/10.1007/bf02410987

    Article  Google Scholar 

  30. Talyan V, Wagoner RH, Lee JK (1998) Formability of stainless steel. Metall Mater Trans A 29(8):2161–2172. https://doi.org/10.1007/s11661-998-0041-1

    Article  Google Scholar 

  31. Jonnalagadda KN et al (2010) Experimental investigation of strain rate dependence of nanocrystalline Pt films. Exp Mech 50(1):25–35. https://doi.org/10.1007/s11340-008-9212-7

    Article  Google Scholar 

  32. Das A, Sinha A, Rao VR, Jonnalagadda KN (2017) Fracture in microscale SU-8 polymer thin films. Exp Mech 57(5):687–701. https://doi.org/10.1007/S11340-017-0262-6/FIGURES/14

    Article  Google Scholar 

  33. Singh M, Sahu PK, Sampath S, Jonnalagadda KN (2024) Fracture toughness of freestanding plasma sprayed yttria stabilized zirconia coatings via In Situ tensile experiments. J Eur Ceram Soc 44(4):2499–2511. https://doi.org/10.1016/j.jeurceramsoc.2023.10.074

    Article  Google Scholar 

  34. Deka N, Singh M, Jonnalagadda KN (2023) Localized strain evolution and accumulation at the notchtip of an aluminum single crystal under cyclic loading. Fatigue Fract Eng Mater Struct 46(6):2299–2318. https://doi.org/10.1111/ffe.13999

    Article  Google Scholar 

  35. Pan B, Xie H, Qian K, Wang Z, Wang Z (2008) Study on subset size selection in digital image correlation for speckle patterns. Opt Express 16(10):7037–7048. https://doi.org/10.1364/OE.16.007037

    Article  Google Scholar 

  36. Pan B, Lu Z, Xie H (2010) Mean intensity gradient: An effective global parameter for quality assessment of the speckle patterns used in digital image correlation. Opt Lasers Eng 48(4):469–477. https://doi.org/10.1016/j.optlaseng.2009.08.010

    Article  Google Scholar 

  37. Crammond G, Boyd SW, Dulieu-Barton JM (2013) Speckle pattern quality assessment for digital image correlation. Opt Lasers Eng 51(12):1368–1378. https://doi.org/10.1016/J.OPTLASENG.2013.03.014

    Article  Google Scholar 

  38. Cao R et al (2018) Effect of rolling reductions on microstructure and properties of 2Cr13/316L multi-layered steel composite plate by accumulative roll-bonding. J Mater Res 33(24):4317–4328. https://doi.org/10.1557/JMR.2018.373

    Article  Google Scholar 

  39. Huang M et al (2016) Revealing extraordinary tensile plasticity in layered Ti-Al metal composite. Sci Rep 6(1):1–10. https://doi.org/10.1038/srep38461

    Article  Google Scholar 

  40. Chen W, He W, Chen Z, Jiang B, Liu Q (2020) Extraordinary room temperature tensile ductility of laminated Ti/Al composite: Roles of anisotropy and strain rate sensitivity. Plast, Int J. https://doi.org/10.1016/j.ijplas.2020.102806

    Book  Google Scholar 

  41. Dhib Z, Guermazi N, Ktari A, Gasperini M, Haddar N (2017) Mechanical bonding properties and interfacial morphologies of austenitic stainless steel clad plates. Mater Sci Eng A 696:374–386. https://doi.org/10.1016/J.MSEA.2017.04.080

    Article  Google Scholar 

  42. Gussev MN, McClintock DA, Garner FA (2016) Analysis of structure and deformation behavior of AISI 316L tensile specimens from the second operational target module at the Spallation Neutron Source. J Nucl Mater 468:210–220. https://doi.org/10.1016/J.JNUCMAT.2015.07.013

    Article  Google Scholar 

  43. Gey N, Petit B, Humbert M (2005) Electron backscattered diffraction study of ε/α′ martensitic variants induced by plastic deformation in 304 stainless steel. Metall Mater Trans A 36(12):3291–3299. https://doi.org/10.1007/S11661-005-0003-9

    Article  Google Scholar 

  44. Iwamoto T, Tsuta T (2000) Computational simulation of the dependence of the austenitic grain size on the deformation behavior of TRIP steels. Int J Plast 16(7–8):791–804. https://doi.org/10.1016/S0749-6419(99)00079-0

    Article  Google Scholar 

  45. Jiang T et al (2017) A high performance martensitic stainless steel containing 1.5 wt% Si. Mater Des 125:35–45. https://doi.org/10.1016/J.MATDES.2017.03.078

    Article  Google Scholar 

  46. Jo YH et al (2019) FCC to BCC transformation-induced plasticity based on thermodynamic phase stability in novel V10Cr10Fe45CoxNi35−x medium-entropy alloys. Sci Rep 9(1):1–14. https://doi.org/10.1038/s41598-019-39570-y

    Article  Google Scholar 

  47. Baghdadchi A, Hosseini VA, Karlsson L (2021) Identification and quantification of martensite in ferritic-austenitic stainless steels and welds. J Mater Res Technol 15:3610–3621. https://doi.org/10.1016/J.JMRT.2021.09.153

    Article  Google Scholar 

Download references

Acknowledgements

The GTMAP program (Project No. 1781) of Aeronautics Research Development Board, DRDO is sincerely thanked for financial support for all the experimental work. The authors would like to thank Prof. U. Ramamurthy, NTU Singapore, for supporting them with the material. They would like to show their gratitude to MMMF Lab and TEM Lab, IIT Bombay for providing the facility to carry out work on sample preparation and SEM/EBSD. Further, they are thankful to Prof. V. Parameswaran, IIT Kanpur and Prof. K. Eswar Prasad, IIT Indore for their valuable inputs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. N. Jonnalagadda.

Ethics declarations

Conflict of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, M., Jonnalagadda, K. An In-Situ Investigation of the Strain Partitioning and Failure Across the Layers in a Multi-Layered Steel. Exp Mech (2024). https://doi.org/10.1007/s11340-024-01042-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11340-024-01042-4

Keywords

Navigation