Skip to main content
Log in

Could Effective Mechanical Properties of Soft Tissues and Biomaterials at Mesoscale be Obtained by Modal Analysis?

  • Research paper
  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

Background

The mechanical properties of biological tissues and soft biomaterials are difficult to explore even though they play an important role in mechanobiological responses and organ homeostasis. Limited availability of harvested tissue and careful handling must be considered as well as discrepancies in biomaterial development.

Objective

We hypothesized that a mixed analytical-experimental modal analysis could be used to determine effective mechanical properties at the mesoscale for hydrated and fragile, poorly available and small-sized biological tissue and biomaterials.

Methods

Young's modulus E, shear modulus G and Poisson's ratio \(\nu\) were obtained from the measurement of first two natural frequencies of a set-up associating tested specimen with a cantilever. Tangent modules are calculated using a set of two analytical governing equations in linear vibration framework. A complementary parametric sensitivity analysis was performed. The methodology was evaluated using materials known to be challenging, namely agarose for biomaterials and bone marrow for biological tissues.

Results

Frequencies were in the range of 350 Hz and acquisition time of few seconds. Linear responses was checked and solution triplets (E, G, \(\nu\)) were (99 ± 10 kPa, 43 ± 0.3 kPa, 0.16 ± 0.1) for agarose and (61 ± 12 kPa, 28 ± 7 kPa, 0.07 ± 0.03) for bone marrow.

Conclusion

Comparisons with literature when available, confirmed approach acceptability. Limited influences of boundary conditions, brief experiments and reproducibility can be considered for applications to fragile and rare biomaterials and biological tissues, in addition to conventional characterization methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

v(x,t), w(x,t) :

Transverse displacement of the cantilever

Q(x,t), M(x,t) :

Shear force and bending moment in the cantilever

\({\omega }_{i}\)\({\phi }_{i}\) (x) :

Angular frequency and mode shape

EIE c\({\rho }_{c}\) , SL :

Cantilever properties: bending stiffness per unit length, Young’s modulus, density, cross- section, length

E, G\(\nu\) :

Specimen properties: effective Young’s modulus, shear modulus and Poisson’s ratio

\(\rho\)\(\alpha\) , sl :

Specimen properties: effective density, shear coefficient, cross-section and length

k, m :

Specimen properties: translational stiffness and mass

\({k}_{\theta }\)\({i}_{\theta }\) :

Specimen properties: rotational stiffness and inertia

References

  1. Humphrey JD, Dufresne ER, Schwartz MA (2014) Mechanotransduction and extracellular matrix homeostasis. Nat Rev Mol Cell Biol 15(12):802–812

    Article  Google Scholar 

  2. Lanske B, Rosen C (2017) Bone Marrow Adipose Tissue: The First 40 Years. J Bone Miner Res 32(6):1153–1156

    Article  Google Scholar 

  3. Roebuck DJ (1999) Skeletal complications in pediatric oncology patients. Radiographics 19(4):873–885

    Article  Google Scholar 

  4. Woo SL, Fisher MB, Feola AJ (2008) Contribution of biomechanics to management of ligament and tendon injuries. Mol Cell Biomech 5(1):49–68

    MATH  Google Scholar 

  5. Watt AJ, Shin AY, Vedder NB, Chang J (2010) Joint arthritis and soft-tissue problems of the hand. Plast Reconstr Surg 126(6):288e–300e

    Article  Google Scholar 

  6. Choi J, Hoffman EA, Lin CL, Milhem MM, Tessier J, Newell JD Jr (2017) Quantitative computed tomography determined regional lung mechanics in normal nonsmokers, normal smokers and metastatic sarcoma subjects. PLoS ONE 12(7):e0179812

    Article  Google Scholar 

  7. Cortini M, Avnet S, Baldini N (2011) Mesenchymal stroma: Role in osteosarcoma progression. Cancer Lett 405:90–99

    Article  Google Scholar 

  8. Elkhenany HA, Szojka ARA, Mulet-Sierra A, Liang Y, Kunze M, Lan X, Sommerfeldt M, Jomha NM, Adesida AB (2021) Bone Marrow Mesenchymal Stem Cell-Derived Tissues are Mechanically Superior to Meniscus Cells. Tissue Eng Part A 27(13–14):914–928

    Article  Google Scholar 

  9. Meng KP, Majedi FS, Thauland TJ, Butte MJ (2020) Mechanosensing through YAP controls T cell activation and metabolism. J Exp Med 217(8):e20200053

    Article  Google Scholar 

  10. Lau A, Oyen ML, Kent RW, Murakami D, Torigaki T (2008) Indentation stiffness of aging human costal cartilage. Acta Biomater 4(1):97–103

    Article  Google Scholar 

  11. Jordan P, Kerdok AE, Howe RD, Socrate S (2011) Identifying a minimal rheological configuration: a tool for effective and efficient constitutive modeling of soft tissues. J Biomech Eng 133(4):041006

    Article  Google Scholar 

  12. Then C, Vogl TJ, Silber G (2012) Method for characterizing viscoelasticity of human gluteal tissue. J Biomech 45(7):1252–1258

    Article  Google Scholar 

  13. Beccani M, Di Natali C, Sliker LJ, Schoen JA, Rentschler ME, Valdastri P (2014) Wireless tissue palpation for intraoperative detection of lumps in the soft tissue. IEEE Trans Biomed Eng 61(2):353–361

    Article  Google Scholar 

  14. Mariappan YK, Glaser KJ, Ehman RL (2010) Magnetic resonance elastography: a review. Clin Anat 23(5):497–511

  15. Wells PN, Liang HD (2011) Medical ultrasound: imaging of soft tissue strain and elasticity. J R Soc Interface 8(64):1521–1549

    Article  Google Scholar 

  16. Sigrist RMS, Liau J, Kaffas AE, Chammas MC, Willmann JK (2017) Ultrasound Elastography: Review of Techniques and Clinical Applications. Theranostics 7(5):1303–1329

    Article  Google Scholar 

  17. Gennisson JL, Deffieux T, Fink M, Tanter M (2013) Ultrasound elastography: principles and techniques. Diagn Interv Imaging 94(5):487–495

    Article  Google Scholar 

  18. Gnyawali SC, Sinha M, El Masry MS, Wulff B, Ghatak S, Soto-Gonzalez F, Wilgus TA, Roy S, Sen CK (2020) High resolution ultrasound imaging for repeated measure of wound tissue morphometry, biomechanics and hemodynamics under fetal, adult and diabetic conditions. PloS One 15(11):e0241831

  19. Duck FA (1990) Physical properties of tissue. Academic Press

    Google Scholar 

  20. Fung YC (1993) Biomechanics: Mechanical Properties of Living Tissues. Springer

  21. Holzapfel GA, Ogden RW (2018) Multiscale soft tissue mechanics and mechanobiology. Springer

  22. Mihail LA, Goriely A (2017) How to characterize a nonlinear elastic material? a review on nonlinear constitutive parameters in isotropic finite elasticity. Proc R Soc A 473:20170607

    Article  MathSciNet  MATH  Google Scholar 

  23. Miller K (2005) Method of testing very soft biological tissues in compression. J Biomech 38(1):153–158

    Article  Google Scholar 

  24. Gasser TC, Ogden RW, Holzapfel GA (2006) Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J R Soc Interface 3(6):15–35

  25. Pervin F, Chen WW (2009) Dynamic mechanical response of bovine gray matter and white matter brain tissues under compression. J Biomech 42(6):731–5

  26. Umale S, Deck C, Bourdet N, Dhumane P, Soler L, Marescaux J, Willinger R (2013) Experimental mechanical characterization of abdominal organs: liver, kidney & spleen. J Mech Behav Biomed Mater 17:22–33

    Article  Google Scholar 

  27. Nicolle S, Noguer L, Palierne JF (2013) Shear mechanical properties of the porcine pancreas: experiment and analytical modelling. J Mech Behav Biomed Mater 26:90–97

    Article  Google Scholar 

  28. Carniel EL, Rubini A, Frigo A, Natali AN (2014) Analysis of the biomechanical behaviour of gastrointestinal regions adopting an experimental and computational approach. Comput Methods Programs Biomed 113(1):338–345

    Article  Google Scholar 

  29. Disney CM, Lee PD, Hoyland JA, Sherratt MJ, Bay BK (2018) A review of techniques for modelling soft tissue microstructure deformation and quantifying strain Ex Vivo. J Microsc 272(3):165–179

    Article  Google Scholar 

  30. Guertler CA, Okamoto RJ, Schmidt JL, Badachhape AA, Johnson CL, Bayly PV (2018) Mechanical properties of porcine brain tissue in vivo and ex vivo estimated by MR elastography. J Biomech 69:10–18

    Article  Google Scholar 

  31. Van Haaften EE, van Turnhout MC, Kurniawan NA (2019) Image-based analysis of uniaxial ring test for mechanical characterization of soft materials and biological tissues. Soft Matter 15(16):3353–3361

    Article  Google Scholar 

  32. Sanchez-Palencia E, Zaoui A (eds) (1987) Homogenization techniques for composite media. Proceedings, Udine, Italy 1985. Berlin etc., Springer-Verlag 1987. IX, 397 pp., DM 73,—. ISBN 3-540-17616-0 (Lecture Notes in Physics 272)

  33. Swider P, Guérin G, Baas J, Søballe K, Bechtold JE (2009) Characterization of bone-implant fixation using modal analysis: application to a press-fit implant model. J Biomech 42:1643–1649

    Article  Google Scholar 

  34. Scholz R, Hoffmann F, von Sachsen S, Drossel WG, Klöhn C, Voigt C (2013) Validation of density-elasticity relationships for finite element modelling of human pelvic bone by modal analysis. J Biomech 46:2667–2673

    Article  Google Scholar 

  35. Miyashita M, Ogawa T, Naito H, Shibamoto A, Wang AS, Shobara K, Sasaki K (2018) Evaluation of implant screw loosening by resonance frequency analysis with triaxial piezoelectric pick-up: in vitro model and in vivo animal study. Clin Oral Investig 22(5):2129–2134

    Article  Google Scholar 

  36. Henyš P, Čapek L (2019) Computational modal analysis of a composite pelvic bone: convergence and validation studies. Comput Methods Biomech Biomed Engin 22(9):916–924

    Article  Google Scholar 

  37. Blondel M, Abidine Y, Assemat P, Palierne S, Swider P (2020) Identification of effective elastic modulus using modal analysis; application to canine cancellous bone. J Biomech 18(110):109972

    Article  Google Scholar 

  38. Meirovitch L (1986) Elements of vibration analysis, 2nd edn. McGraw-Hill, USA

    MATH  Google Scholar 

  39. Clough RW, Penzien J (1975) Dynamics of structures. McGraw-Hill, USA

    MATH  Google Scholar 

  40. Lalanne M, Berthier P, Der Hagopian J (1983) Mechanical vibrations for engineers. Wiley and Sons

    MATH  Google Scholar 

  41. Nashif AD, Jones DI, Henderson JP (1985) Vibration damping. Wiley, USA

    Google Scholar 

  42. Ewins DJ (2000) Modal Testing; theory, practice and application, 2nd edn. Wiley, USA

    Google Scholar 

  43. Nayfeh AH, Mook DT (2008) Nonlinear oscillations. John Wiley & Sons

    MATH  Google Scholar 

  44. Xia T, Liu W, Yang L (2017) Agarose properties. A review of gradient stiffness hydrogels used in tissue engineering and regenerative medicine. J Biomed Mater Res A 105(6):1799–1812

  45. Salati MA, Khazai J, Tahmuri AM, Samadi A, Taghizadeh A, Taghizadeh M, Zarrintaj P, Ramsey JD, Habibzadeh S, Seidi F, Saeb MR, Mozafari M (2020) Agarose-Based Biomaterials: Opportunities and Challenges in Cartilage Tissue Engineering. Polymers 12(5):1150

    Article  Google Scholar 

  46. Gao X, Gu W (2014) A new constitutive model for hydration-dependent mechanical properties in biological soft tissues and hydrogels. J Biomech 47(12):3196–3200

    Article  Google Scholar 

  47. Gross W, Kress H (2017) Simultaneous measurement of the Young’s modulus and the Poisson ratio of thin elastic layers. Soft Matter 13(5):1048–1055

    Article  Google Scholar 

  48. Sadeghi S, Cortes DH (2020) Measurement of the shear modulus in thin-layered tissues using numerical simulations and shear wave elastography. J Mech Behav Biomed Mater 102:103502

    Article  Google Scholar 

  49. Metzger TA, Shudick JM, Seekell R, Zhu Y, Niebur GL (2014) Rheological behavior of fresh bone marrow and the effects of storage. J Mech Behav Biomed Mater 40:307–313

    Article  Google Scholar 

  50. Jansen LE, Birch NP, Schiffman JD, Crosby AJ, Peyton SR (2015) Mechanics of intact bone marrow. J Mech Behav Biomed Mater 50:299–307

    Article  Google Scholar 

  51. Curtis KJ, Oberman AG, Niebur GL (2020) Effects of mechanobiological signaling in bone marrow on skeletal health. Ann N Y Acad Sci 1460(1):11–24

    Article  Google Scholar 

  52. Cowin SC (1999) Bone poroelasticity. J Biomech 32(3):217–238

    Article  MathSciNet  Google Scholar 

  53. Coussy O (2004) Poromechanics. Wiley, USA

    MATH  Google Scholar 

  54. Ehret A E, Bircher K, Stracuzzi A, Marina V, Zündel M, Mazza E (2017) Inverse poroelasticity as a fundamental mechanism in biomechanics and mechanobiology. Nat Commun 8(1)

  55. Esteki MH, Alemrajabi AA, Hall CM, Sheridan GK, Azadi M, Moeendarbary E (2020) A new framework for characterization of poroelastic materials using indentation. Acta Biomater 102:138–148

    Article  Google Scholar 

  56. Zhang W, Soman P, Meggs K, Qu X, Chen S (2013) Tuning the Poisson's Ratio of Biomaterials for Investigating Cellular Response. Adv Funct Mater 23(25). https://doi.org/10.1002/adfm.201202666.

  57. Cappello J, d'Herbemont V, Lindner A, du Roure O (2020) Microfluidic In-Situ Measurement of Poisson's Ratio of Hydrogels. Micromachines 11(3):31

  58. Normand V, Lootens DL, Amici E, Plucknett KP, Aymard P (2000) New insight into agarose gel mechanical properties. Biomacromol 1(4):730–738

    Article  Google Scholar 

  59. Farrell MD, Riches PE (2013) On the poisson’s ratio of the nucleus pulposus. J Biomech Eng 135(10):104501

    Article  Google Scholar 

  60. Danso EK, Julkunen P, Korhonen RK (2018) Poisson’s ratio of bovine meniscus determined combining unconfined and confined compression. J Biomech 22(77):233–237

    Article  Google Scholar 

Download references

Acknowledgements

The French Minister of Education and Research, the French National Center for research (CNRS) and the Region Occitanie (France) are acknowledged for their assistance and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Swider.

Ethics declarations

Ethical Approval

The work described in the manuscript has not been published before. It is not under consideration for publication anywhere else, and the publication has been approved by all co-authors.

Conflict of Interest

The authors hereby declare to have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Under separation of variables hypothesis, the displacement v(x,t) is written as the product of the mode shape ϕ(x) by the time function f(t). Verifying equation (1) gives conditions (A1) and (A2).

$$\begin{array}{ll}\frac{{\partial }^{4}\phi \left(x\right)}{\partial {x}^{4}}-\frac{{\rho }_{c}S}{{E}_{c}I}\cdot {\omega }^{2}\phi \left(x\right)=0& \left(\text{a}\right)\\\frac{{\partial }^{2}f\left(t\right)}{\partial {t}^{2}}+{\omega }^{2}f\left(t\right)=0& (\text{b})\end{array}$$
(A1)

Solutions of f(t) are harmonic functions with constants depending upon time initial conditions as expressed by equation (A2). The mode shape ϕ(x) is expressed by equation (A3a) with roots \(\beta\) depending upon angular frequencies as detailed in (A3b).

$$f\left(t\right)=A\,\mathrm{sin}\,\omega t+B\,\mathrm{cos}\,\omega t$$
(A2)
$$\begin{array}{ll}\phi \left(x\right)=C\;\mathrm{cos}\;\beta x+D\;\mathrm{cos}\;\beta x+E\;\mathrm{sinh}\;\beta x+F\;\mathrm{cosh}\;\beta x &\left(\text{a}\right)\\with &{}\\\beta ={\left({\rho }_{c}S{\omega }^{2}/{E}_{c}I\right)}^{1/4}& (\text{b})\end{array}$$
(A3)

Constants C, D, E and F depend on space boundary conditions. Clamping conditions in x = 0 give the two first equation (A4a, b) independent from f(t).

$$\begin{array}{ll}\phi \left(0\right)=0 &\left(\text{a}\right)\\\text{and}&{} \\\frac{\partial \phi \left(0\right)}{\partial x}=0 &(\text{b})\end{array}$$
(A4)

For mode shapes describing motion in the vertical plane, i.e. v(x,t), mass and stiffness coefficients used in system (3) are detailed as follows:

$$\begin{aligned}&E_{c}\,I=E_{c}\,bh^{3}/12,\;m=\rho sl/3,\;i_{\theta}=\rho sl^{3}/105,\\&k=Es/l,\;l_{\theta}=(4+a)\,Ei/ (2+a)\,l\end{aligned}$$

with i = s2 / 4\(\pi\) and a = 3es /\(\alpha \pi\)l 2 G with \(\alpha\): shear coefficient

For mode shapes describing motion in the horizontal plane, i.e. w(x,t), mass and stiffness coefficients used in system (3) are detailed as follows:

$$\begin{aligned}&E_{c}I=E_{c}.hb^{3}/12,\;m=13\rho sl/35,\;i_{\theta}=\rho s^{2}l/6\pi,\\& k=12\;Ei/(1+a)\,l^{3},\;k_{\theta}=Gs^{2}/2\pi l\end{aligned}$$

with i = s2 / 2\(\pi\) and a = 3Es /\(\alpha \pi\)l 2 G

In those equations, b and h are respectively the width and height of cantilever cross-section, Ec the cantilever Young’s modulus. The parameters \(\rho ,\) s and l are respectively the effective density, cross-section surface and length of the specimen whereas E, G and v are the effective Young’s modulus, the shear modulus and the Poisson’s ratio of the specimen.

Coefficients of equation 4a, b are detailed as follows:

$$\begin{aligned}&{a}_{1}=945{s}^{4}\left(1-\mathrm{cos}\;\beta L\;\mathrm{ch}\;\beta L\right) \\&{a}_{2}=1260{s}^{3}\;\alpha \pi {l}^{2}\left(1-\mathrm{cos}\;\beta L\;\mathrm{ch}\;\beta L\right)\end{aligned}$$
$$\begin{aligned}{a}_{3}=&-{s}^{3}\rho {l}^{2}{\omega }^{2}\left(315s+36\pi {l}^{2}\right)\left(1-\mathrm{cos}\;\beta L\;\mathrm{ch}\;\beta L\right)\\&+945EI\,{\beta }^{3}l{s}^{3}\left(\mathrm{cos}\;\beta L\;\mathrm{sh}\;\beta L+\mathrm{sin}\;\beta L\;\mathrm{ch}\;\beta L\right)\\& +3780EI\,\beta \pi l{s}^{2}\left(\mathrm{cos}\;\beta L\;\mathrm{sh}\;\beta L+\mathrm{sin}\;\beta L\;\mathrm{ch}\;\beta L\right)\end{aligned}$$
$$\begin{aligned}{a}_{4}=&\;-{s}^{3}\rho {l}^{2}{\omega }^{2}\left(315s+36\pi {l}^{2}\right)\left(1-\mathrm{cos}\;\beta L\;\mathrm{ch}\;\beta L\right)\\&+945EI\;{\beta }^{3}l{s}^{3}\left(\mathrm{cos}\;\beta L\;\mathrm{sh}\;\beta L+\mathrm{sin}\;\beta L\;\mathrm{ch}\;\beta L\right)\\& +3780EI\;\beta \pi l{s}^{2}\left(\mathrm{cos}\;\beta L\;\mathrm{sh}\;\beta L+\mathrm{sin}\;\beta L\;\mathrm{ch}\;\beta L\right)\end{aligned}$$
$$\begin{aligned}{a}_{5}=&\;-36\pi EI\;{\beta }^{3}{l}^{5}{s}^{2}\rho {\omega }^{2}\left(\mathrm{cos}\;\beta L\;\mathrm{sh}\;\beta L+\mathrm{sin}\;\beta L\;\mathrm{ch}\;\beta L\right)\\&+1260\pi EI\;\beta {l}^{3}{s}^{2}\rho {\omega }^{2}\left(\mathrm{cos}\;\beta L\;\mathrm{sh}\;\beta L-\mathrm{sin}\;\beta L\;\mathrm{ch}\;\beta L\right)\\& +3780\pi E{I}^{2}\;{\beta }^{4}{l}^{2}s\,\left(1+\mathrm{cos}\;\beta L\;\mathrm{ch}\;\beta L\right)\\&+12\pi {l}^{6}{s}^{3}{\rho }^{2}{\omega }^{4}\left(1-\mathrm{cos}\;\beta L\;\mathrm{ch}\;\beta L\right)\end{aligned}$$
$$\begin{aligned}{a}_{6}=&\;-12{\pi }^{2}EI\,{\beta }^{3}{l}^{7}\alpha s\rho {\omega }^{2}\left(\mathrm{cos}\;\beta L\;\mathrm{sh}\;\beta L+\mathrm{sin}\;\beta L\;\mathrm{ch}\;\beta L\right)\\&+420{\pi }^{2}EI\,\beta {l}^{5}\alpha s\rho {\omega }^{2}\left(\mathrm{cos}\;\beta L\;\mathrm{sh}\;\beta L-\mathrm{sin}\;\beta L\;\mathrm{ch}\;\beta L\right)\\& +1260{\pi }^{2}E{I}^{2}\,{\beta }^{4}{l}^{4}\alpha \,\left(1+\mathrm{cos}\;\beta L\;\mathrm{ch}\;\beta L\right)\\&+4{\pi }^{2}{l}^{3}\alpha {s}^{2}{\rho }^{2}{\omega }^{4}\left(1-\mathrm{cos}\;\beta L\;\mathrm{ch}\;\beta L\right)\end{aligned}$$
$$\begin{aligned}&{a}_{7}=630\alpha {s}^{4}\left(1-\mathrm{cos}\;\beta L\;\mathrm{ch}\;\beta L\right)\\&{a}_{8}=-39\pi \alpha {s}^{3}{l}^{4}\rho {\omega }^{2}\left(1-\mathrm{cos}\;\beta L\;\mathrm{ch}\;\beta L\right)\\&\quad\quad+105\pi \alpha {s}^{2}EI\,{\beta }^{3}\left(\mathrm{cos}\;\beta L\;\mathrm{sh}\;\beta L+\mathrm{sin}\;\beta L\;\mathrm{ch}\;\beta L\right)\end{aligned}$$
$$\begin{aligned}{a}_{9}=&\;-3\rho {\omega }^{2}{l}^{2}{s}^{4}\left(39+70\alpha \right)\left(1-\mathrm{cos}\;\beta L\;\mathrm{ch}\;\beta L\right)\\&+315EI\;{\beta }^{3}l{s}^{3}\left(\mathrm{cos}\;\beta L\;\mathrm{sh}\;\beta L+\mathrm{sin}\;\beta L\;\mathrm{ch}\;\beta L\right)\\& -1260EI\;\beta \pi l\alpha {s}^{2}\left(\mathrm{cos}\;\beta L\;\mathrm{sh}\;\beta L-\mathrm{sin}\;\beta L\;\mathrm{ch}\;\beta L\right)\end{aligned}$$
$$\begin{aligned}{a}_{10}=&\;-35\pi EI\,{\beta }^{3}{l}^{5}\alpha {s}^{2}\rho {\omega }^{2}\left(\mathrm{cos}\;\beta L\;\mathrm{sh}\;\beta L+\mathrm{sin}\;\beta L\;\mathrm{ch}\;\beta L\right)\\&+78{\pi }^{2}EI\,\beta {l}^{5}\alpha s\rho {\omega }^{2}\left(\mathrm{cos}\;\beta L\;\mathrm{sh}\;\beta L-\mathrm{sin}\;\beta L\;\mathrm{ch}\;\beta L\right)\\& +210{\pi }^{2}E{I}^{2}\,{\beta }^{4}{l}^{4}\alpha \left(1+\mathrm{cos}\;\beta L\;\mathrm{ch}\;\beta L\right)\\&+13\pi {l}^{6}{s}^{3}{\rho }^{2}{\omega }^{4}\alpha \left(1-\mathrm{cos}\;\beta L\;\mathrm{ch}\;\beta L\right)\end{aligned}$$
$$\begin{aligned}{a}_{11}=&\;-105EI\,{\beta }^{3}{l}^{3}{s}^{3}\rho {\omega }^{2}\left(\mathrm{cos}\;\beta L\;\mathrm{sh}\;\beta L+\mathrm{sin}\;\beta L\;\mathrm{ch}\;\beta L\right)\\&+234\pi EI\,\beta {l}^{3}{s}^{2}\rho {\omega }^{2}\left(\mathrm{cos}\;\beta L\;\mathrm{sh}\;\beta L-\mathrm{sin}\;\beta L\;\mathrm{ch}\;\beta L\right)\\& +630\pi E{I}^{2}\,{\beta }^{4}{l}^{2}s\,\left(1+\mathrm{cos}\;\beta L\;\mathrm{ch}\;\beta L\right)\\&+39{l}^{4}{s}^{4}{\rho }^{2}{\omega }^{4}\,\left(1-\mathrm{cos}\;\beta L\;\mathrm{ch}\;\beta L\right)\end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Swider, P., Abidine, Y. & Assemat, P. Could Effective Mechanical Properties of Soft Tissues and Biomaterials at Mesoscale be Obtained by Modal Analysis?. Exp Mech 63, 1055–1065 (2023). https://doi.org/10.1007/s11340-023-00974-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-023-00974-7

Keywords

Navigation