Skip to main content
Log in

Architecture-Driven Digital Volume Correlation: Application to the Analysis of In-Situ Crushing of a Polyurethane Foam

  • Research paper
  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

Background

Digital Volume correlation (DVC) consists in identifying the displacement fields that allow for the best possible registration of volume images of a sample captured at various loading stages. With cellular materials, the use of DVC faces an intrinsic limit: in the absence of an exploitable texture on (or in) the struts or cell walls, the available speckle pattern will unavoidably be formed by the material architecture itself. This leads to the inability of classical DVC techniques to measure kinematics below the cellular scale, i.e. at the sub-cellular or micro scales.

Objectives

Here, we extend a newly developed architecture-driven DIC technique [1] for the measurement of 3D displacement fields in real cellular materials at the scale of the architecture.

Methods

The proposed solution consists in assisting DVC by a weak elastic regularization using, as support, an automatic finite-element image-based mechanical model.

Results

Complex (locally buckling) kinematics of a polyurethane foam under compression are accurately measured during an in-situ test. The method is essential to evidence the class of dominance (stretching versus bending) of the foam.

Conclusion

The proposed method allows to confirm that the foam used is bending-dominated, which is not possible with a classical mesoscopic DVC approach. This method is a good candidate for the analysis of complex local deformation mechanisms at the architecture scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Rouwane A, Bouclier R, Passieux JC, Périé JN (2022) Architecture-driven digital image correlation technique (ADDICT) for the measurement of sub-cellular kinematic fields in speckle-free cellular materials. Int J Solids Struct 234–235

    Article  Google Scholar 

  2. Ashby M (2013) Designing architectured materials. Scripta Mater 68(1):4–7

    Article  MathSciNet  Google Scholar 

  3. Brechet Y, Embury JD (2013) Architectured materials: Expanding materials space. Scripta Mater 68(1):1–3

    Article  Google Scholar 

  4. Greer JR, Deshpande VS (2019) Three-dimensional architected materials and structures: Design, fabrication, and mechanical behavior. MRS Bull 44(10):750–757

    Article  Google Scholar 

  5. Dallago M, Winiarski B, Zanini F, Carmignato S, Benedetti M (2019) On the effect of geometrical imperfections and defects on the fatigue strength of cellular lattice structures additively manufactured via selective laser melting. Int J Fatigue 124:348–360

    Article  Google Scholar 

  6. Hernández-Nava E, Smith C, Derguti F, Tammas-Williams S, Leonard F, Withers P, Todd I, Goodall R (2016) The effect of defects on the mechanical response of ti-6al-4v cubic lattice structures fabricated by electron beam melting. Acta Materialia 108:279–292

  7. Maire E, Fazekas A, Salvo L, Dendievel R, Youssef S, Cloetens P, Letang JM (2003) X-ray tomography applied to the characterization of cellular materials. related finite element modeling problems. Compos Sci Technol 63(16):2431–2443 Porous Materials

  8. van Rietbergen B, Weinans H, Huiskes R, Odgaard A (1995) A new method to determine trabecular bone elastic properties and loading using micromechanical finite-element models. J Biomech 28(1):69–81

    Article  Google Scholar 

  9. Frey P, Sarter B, Gautherie M (1994) Fully automatic mesh generation for 3-d domains based upon voxel sets. Int J Numer Meth Eng 37(16):2735–2753

    Article  MATH  Google Scholar 

  10. Hollister S, Brennan J, Kikuchi N (1994) A homogenization sampling procedure for calculating trabecular bone effective stiffness and tissue level stress. J Biomech 27(4):433–444

    Article  Google Scholar 

  11. Ulrich D, van Rietbergen B, Weinans H, Rüegsegger P (1998) Finite element analysis of trabecular bone structure: a comparison of image-based meshing techniques. J Biomech 31(12):1187–1192

    Article  Google Scholar 

  12. Lozanovski B, Leary M, Tran P, Shidid D, Qian M, Choong P, Brandt M (2019) Computational modelling of strut defects in slm manufactured lattice structures. Materials & Design 171

    Article  Google Scholar 

  13. Müller R, Rüegsegger P (1995) Three-dimensional finite element modelling of non-invasively assessed trabecular bone structures. Med Eng Phys 17(2):126–133

  14. Buffiere JY, Maire E, Adrien J, Masse JP, Boller E (2010) In situ experiments with x ray tomography: an attractive tool for experimental mechanics. Exp Mech 50(3):289–305

    Article  Google Scholar 

  15. Bay BK, Smith TS, Fyhrie DP, Saad M (1999) Digital volume correlation: three-dimensional strain mapping using x-ray tomography. Exp Mech 39(3):217–226

    Article  Google Scholar 

  16. Chen Y, DallÁra E, Sales E, Manda K, Wallace R, Pankaj P, Viceconti M (2017) Micro-ct based finite element models of cancellous bone predict accurately displacement once the boundary condition is well replicated: A validation study. J Mech Behav Biomed Mater 65:644–651

    Article  Google Scholar 

  17. Rannou J, Limodin N, Réthoré J, Gravouil A, Ludwig W, Baïetto-Dubourg MC, Buffiëre JY, Combescure A, Hild F, Roux S (2010) Three dimensional experimental and numerical multiscale analysis of a fatigue crack. Comput Meth Appl Mech Eng 199(21):1307–1325, multiscale Models and Mathematical Aspects in Solid and Fluid Mechanics

  18. Zauel R, Yeni Y, Bay B, Dong X, Fyhrie DP (2006) Comparison of the linear finite element prediction of deformation and strain of human cancellous bone to 3d digital volume correlation measurements. J Biomech Eng 128(1):1–6

    Article  Google Scholar 

  19. Buljac A, Trejo Navas VM, Shakoor M, Bouterf A, Neggers J, Bernacki M, Bouchard PO, Morgeneyer TF, Hild F (2018) On the calibration of elastoplastic parameters at the microscale via x-ray microtomography and digital volume correlation for the simulation of ductile damage. Eur J Mech A Solids 72:287–297

    Article  Google Scholar 

  20. Marter AD, Dickinson AS, Pierron F, Browne M (2018) A practical procedure for measuring the stiffness of foam like materials. Exp Tech 42(4):439–452

    Article  Google Scholar 

  21. Salvo L, Belestin P, Maire E, Jacquesson M, Vecchionacci C, Boller E, Bornert M, Doumalin P (2004) Structure and mechanical properties of afs sandwiches studied by in-situ compression tests in x-ray microtomography. Adv Eng Mater 6(6):411–415

    Article  Google Scholar 

  22. Bastawros AF, Bart-Smith H, Evans A (2000) Experimental analysis of deformation mechanisms in a closed-cell aluminum alloy foam. J Mech Phys Solids 48(2):301–322

    Article  MATH  Google Scholar 

  23. Hu Z, Du Y, Luo H, Zhong B, Lu H (2014) Internal deformation measurement and force chain characterization of mason sand under confined compression using incremental digital volume correlation. Exp Mech 54(9):1575–1586

    Article  Google Scholar 

  24. Verhulp E, Rietbergen B, Huiskes R (2004) A three-dimensional digital image correlation technique for strain measurements in microstructures. J Biomech 37(9):1313–1320

    Article  Google Scholar 

  25. Roux S, Hild F, Viot P, Bernard D (2008) Three-dimensional image correlation from x-ray computed tomography of solid foam. Compos Part A: Appl Sci Manufac 39(8):1253–1265

    Article  Google Scholar 

  26. DallÁra E, Peña-Fernández M, Palanca M, Giorgi M, Cristofolini L, Tozzi G (2017) Precision of digital volume correlation approaches for strain analysis in bone imaged with micro-computed tomography at different dimensional levels. Frontiers in Materials 4:31

    Article  Google Scholar 

  27. Leclerc H, Périé JN, Roux S, Hild F (2011) Voxel-scale digital volume correlation. Exp Mech 51(4):479–490

    Article  Google Scholar 

  28. Réthoré J, Roux S, Hild F (2009) An extended and integrated digital image correlation technique applied to the analysis of fractured samples. European Journal of Computational Mechanics 18(3–4):285–306

    Article  MATH  Google Scholar 

  29. Fischer B, Modersitzki J (2004) A unified approach to fast image registration and a new curvature based registration technique. Linear Algebra Appl 380:107–124

    Article  MathSciNet  MATH  Google Scholar 

  30. Sotiras A (2011) Discrete image registration: a hybrid paradigm. PhD thesis, Ecole Centrale Paris

  31. Claire D, Hild F, Roux S (2004) A finite element formulation to identify damage fields: the equilibrium gap method. Int J Numer Meth Eng 61(2):189–208

    Article  MATH  Google Scholar 

  32. Mendoza A, Neggers J, Hild F, Roux S (2019) Complete mechanical regularization applied to digital image and volume correlation. Comput Methods Appl Mech Eng 355:27–43

    Article  MathSciNet  MATH  Google Scholar 

  33. Deshpande V, Ashby M, Fleck N (2001) Foam topology: bending versus stretching dominated architectures. Acta Mater 49(6):1035–1040. https://doi.org/10.1016/S1359-6454(00)00379-7

    Article  Google Scholar 

  34. Somera A, Poncelet M, Auffray N, Réthoré J (2022) Quasi-periodic lattices: Pattern matters too. Scripta Materialia 209:114378 https://doi.org/10.1016/j.scriptamat.2021.114378

  35. Ahrens J, Geveci B, Law C (2005) Paraview: An end-user tool for large data visualization. The visualization handbook 717(8)

  36. Ayachit U (2015) The paraview guide: a parallel visualization application

  37. Réthoré J (2010) A fully integrated noise robust strategy for the identification of constitutive laws from digital images. Int J Numer Meth Eng 84(6):631–660

    Article  MATH  Google Scholar 

  38. Leclerc H, Périé JN, Hild F, Roux S (2012) Digital volume correlation: what are the limits to the spatial resolution ? Mechanics & Industry 13(6):361–371

    Article  Google Scholar 

  39. Horn BKP, Schunck BG (1981) Determining optical flow. Artif Intell 17(1–3):185–203

    Article  MATH  Google Scholar 

  40. Leclerc H, Roux S, Hild F (2015) Projection savings in ct-based digital volume correlation. Exp Mech 55(1):275–287

    Article  Google Scholar 

  41. Gomes Perini L, Passieux JC, Périé JN (2014) A multigrid pgd-based algorithm for volumetric displacement fields measurements. Strain 50(4):355–367

    Article  Google Scholar 

  42. Neggers J, Blaysat B, Hoefnagels JPM, Geers MGD (2016) On image gradients in digital image correlation. Int J Numer Meth Eng 105(4):243–260

    Article  MathSciNet  Google Scholar 

  43. Passieux JC, Bouclier R (2019) Classic and inverse compositional gauss-newton in global DIC. Int J Numer Meth Eng 119(6):453–468

    Article  MathSciNet  Google Scholar 

  44. Fedele R, Galantucci L, Ciani A (2013) Global 2d digital image correlation for motion estimation in a finite element framework: a variational formulation and a regularized, pyramidal, multi-grid implementation. Int J Numer Meth Eng 96(12):739–762

    Article  MATH  Google Scholar 

  45. Pan B, Xie H, Wang Z, Qian K, Wang Z (2008) Study on subset size selection in digital image correlation for speckle patterns. Opt Express 16(10):7037–7048

    Article  Google Scholar 

  46. Bomarito G, Hochhalter J, Ruggles T, Cannon A (2017) Increasing accuracy and precision of digital image correlation through pattern optimization. Opt Lasers Eng 91:73–85

    Article  Google Scholar 

  47. Fouque R, Bouclier R, Passieux JC, Périé JN (2021) Fractal pattern for multiscale digital image correlation. Exp Mech 61(3):483–497

    Article  Google Scholar 

  48. Passieux JC, Périé JN, Marguerès P, Douchin B, Gomes Perini L (2013) On the joint use of an opacifier and digital volume correlation to measure micro-scale volumetric displacement fields in a composite. In: ICTMS2013 - The 1st International Conference on Tomography of Materials and Structures, Ghent, Belgium

  49. Brault R, Germaneau A, Dupré JC, Doumalin P, Mistou S, Fazzini M (2013) In-situ analysis of laminated composite materials by X-ray micro-computed tomography and digital volume correlation. Exp Mech 53(7):1143–1151

    Article  Google Scholar 

  50. Xu F (2018) Quantitative characterization of deformation and damage process by digital volume correlation: A review. Theor Appl Mech Lett 8(2):83–96

    Article  Google Scholar 

  51. Dufour JE, Beaubier B, Hild F, Roux S (2015) Cad-based displacement measurements with stereo-dic. Exp Mech 55(9):1657–1668

    Article  Google Scholar 

  52. Colantonio G, Chapelier M, Bouclier R, Passieux JC, Marenić E (2020) Noninvasive multilevel geometric regularization of mesh-based three-dimensional shape measurement. Int J Numer Meth Eng 121(9):1877–1897

    Article  MathSciNet  Google Scholar 

  53. Chapelier M, Bouclier R, Passieux JC (2021) Free-form deformation digital image correlation (ffd-dic): A non-invasive spline regularization for arbitrary finite element measurements. Comput Methods Appl Mech Eng 384

    Article  MathSciNet  MATH  Google Scholar 

  54. Bouclier R, Passieux JC (2017) A domain coupling method for finite element digital image correlation with mechanical regularization: Application to multiscale measurements and parallel computing. Int J Numer Meth Eng 111(2):123–143

    Article  MathSciNet  MATH  Google Scholar 

  55. Passieux JC, Périé JN (2012) High resolution digital image correlation using proper generalized decomposition: Pgd-dic. Int J Numer Methods Eng 92(6):531–550

    Article  MathSciNet  MATH  Google Scholar 

  56. van Dijk NP, Wu D, Persson C, Isaksson P (2019) A global digital volume correlation algorithm based on higher-order finite elements: Implementation and evaluation. Int J Solids Struct 168:211–227

    Article  Google Scholar 

  57. Tsitova A, Bernachy-Barbe F, Bary B, Dandachli S, Bourcier C, Smaniotto B, Hild F (2021) Damage quantification via digital volume correlation with heterogeneous mechanical regularization: Application to an in situ meso-flexural test on mortar. Exp Mech pp. 1–17

  58. Unser M (1999) Splines: a perfect fit for signal and image processing. IEEE Signal Process Mag 16(6):22–38

    Article  Google Scholar 

  59. Unser M, Aldroubi A, Eden M et al (1991) Fast b-spline transforms for continuous image representation and interpolation. IEEE Trans Pattern Anal Mach Intell 13(3):277–285

    Article  Google Scholar 

  60. Jones EM, Iadicola MA etal (2018) A good practices guide for digital image correlation. International Digital Image Correlation Society 10

  61. Bajcsy R, Kovačič S (1989) Multiresolution elastic matching. Computer vision, graphics, and image processing 46(1):1–21

    Article  Google Scholar 

  62. Rueckert D, Sonoda LI, Hayes C, Hill DL, Leach MO, Hawkes DJ (1999) Nonrigid registration using free-form deformations: application to breast mr images. IEEE Trans Med Imaging 18(8):712–721

    Article  Google Scholar 

  63. Haber E, Modersitzki J (2006) A multilevel method for image registration. SIAM J Sci Comput 27(5):1594–1607

    Article  MathSciNet  MATH  Google Scholar 

  64. Réthoré J, Hild F, Roux S (2007) Shear-band capturing using a multiscale extended digital image correlation technique. Comput Methods Appl Mech Eng 196(49–52):5016–5030

    Article  MATH  Google Scholar 

  65. Fedele R, Ciani A, Galantucci L, Bettuzzi M, Andena L (2013) A regularized, pyramidal multi-grid approach to global 3d-volume digital image correlation based on x-ray micro-tomography. Fund Inform 125(3–4):361–376

    MathSciNet  Google Scholar 

  66. Valmalle M, Vintache A, Smaniotto B, Gutmann F, Spagnuolo M, Ciallella A, Hild F (2022) Local-global dvc analyses confirm theoretical predictions for deformation and damage onset in torsion of pantographic metamaterial. Mech Mater p. 104379

  67. Lorensen WE, Cline HE (1987) Marching cubes: A high resolution 3d surface construction algorithm. Computer Graphics 21(4):163–169

    Article  Google Scholar 

  68. van der Walt S, Schünberger JL, Nunez-Iglesias J, Boulogne F, Warner JD, Yager N, Gouillart E, Yu T (2014) scikit-image: image processing in Python. PeerJ 2

    Article  Google Scholar 

  69. The CGAL Project (2021) CGAL user and reference manual. https://doc.cgal.org/5.3.1/Manual/packages.html

  70. Szeliski R, Lavallée S (1996) Matching 3-d anatomical surfaces with non-rigid deformations using octree-splines. Int J Comput Vis 18(2):171–186

    Article  Google Scholar 

  71. Ferrant M, Warfield SK, Guttmann CR, Mulkern RV, Jolesz FA, Kikinis R (1999) 3d image matching using a finite element based elastic deformation model. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, Springer, pp 202–209

  72. Chen Y, Davis TA, Hager WW, Rajamanickam S (2008) Algorithm 887: Cholmod, supernodal sparse cholesky factorization and update/downdate. ACM Transactions on Mathematical Software (TOMS) 35(3):1–14

    Article  MathSciNet  Google Scholar 

  73. Réthoré J, Muhibullah Elguedj T, Coret M, Chaudet P, Combescure A (2013) Robust identification of elasto-plastic constitutive law parameters from digital images using 3d kinematics. Int J Solids Struct 50(1):73–85

    Article  Google Scholar 

  74. Tournier PH, Aliferis I, Bonazzoli M, De Buhan M, Darbas M, Dolean V, Hecht F, Jolivet P, El Kanfoud I, Migliaccio C et al (2019) Microwave tomographic imaging of cerebrovascular accidents by using high-performance computing. Parallel Comput 85:88–97

    Article  MathSciNet  Google Scholar 

  75. MacNeil JML, Morozov D, Panerai F, Parkinson D, Barnard H, Ushizima D (2019) Distributed global digital volume correlation by optimal transport. In: 2019 IEEE/ACM 1st Annual Workshop on Large-scale Experiment-in-the-Loop Computing (XLOOP), IEEE, pp 14–19

  76. PyMesh DT (2020) Pymesh: geometry processing library for python. https://github.com/PyMesh/PyMesh

  77. Akenine-Mller T, Haines E, Hoffman N (2018) Real-time Rendering, Fourth Edition, 4th edn. A. K, Peters Ltd, USA

    Book  Google Scholar 

Download references

Funding

This work was supported by Région Occitanie and Université Fédérale Toulouse-Midi-Pyrénées.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Rouwane.

Ethics declarations

Conflicts of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: FE interrogation for arbitrary points

Appendix: FE interrogation for arbitrary points

We present in this appendix a procedure that allows to perform automatically the displacement exchange between two arbitrary finite-element meshes. We consider the following steps for solving this geometric problem:

Step 1: Location of the Nearest Face of the FE Mesh to the Point

Efficient data structures (very common in collision detection algorithms) can be efficiently used to speed up point queries with respect to complex geometric objects represented by faces. In this work, we mainly use a rootine from the CGAL library [69] and PyMesh [76]. Efficient point queries such as intersections, distance computation, ray shooting can be performed using Axis Aligned Bounding Boxes (AABB) trees [77]. This allows to detect the nearest face to an arbitrary point.

Step 2: Location of the Tetrahedral Element Containing the Point

After determining the nearest face, the location test is performed on the tetrahedrons that share this same face (they are at most two). To do so, one can consider two methods:

  • Method 1: Computation of the barycentric coordinates by resolution of the linear system:

    $$\begin{aligned} \left\{ \begin{array}{l} x = \displaystyle \sum _{i=1}^m \lambda _i t_i \\ \displaystyle \sum _{i=1}^m\lambda _i = 1 \end{array} \right. \end{aligned}$$
    (12)

    If \(\lambda _i>0, \quad \forall i\in \left\{ 1,...,m\right\}\) then the point x belongs to the tetrahedron bounded by the nodes \((t_i)_{i\in \left\{ 1,...,m\right\} }\). m is the number of nodes per convex set (4 in our case).

  • Method 2: A faster method which does not consist in solving a linear system can be considered. We only evaluate the signed distance of the point to each of the tetrahedron faces. First, the orientation of the faces must be determined so that all the face normal vectors point towards the same direction. This is given by an orientation matrix denoted \(\textbf{O}\in \mathbb {R}^{3\times 4}\) that depends of the used mesh. Each column of \(\textbf{O}\) represents the indices of the nodes of the tetrahedron faces. The point x belongs to the tetrahedron if the distances to all the faces have the same sign. This is written as follows:

    $$\begin{aligned} (x- t_{\textbf{O}_{2,i}})^T n_i(t_{\textbf{O}_{2,i}}) < 0, \quad \forall i \in \left\{ 1,..,4 \right\} \end{aligned}$$
    (13)

    where \(n_i(t_{\textbf{O}_{2,i}})\) is the normal vector at node \(t_{\textbf{O}_{2,i}}\) (which is the second node of the face i). It is defined by \(n_i(t_2)=(t_{\textbf{O}_{2,i}}-t_{\textbf{O}_{1,i}}) \times (t_{\textbf{O}_{3,i}}-t_{\textbf{O}_{2,i}})\).

Step 3: Evaluation of the Displacement Field at the Point

Once the tetrahedron containing the point is determined, the isoparametric transformation \((x=\sum _{i}N_i(\xi )t_i)\) is inverted in order to find the isoparametric coordinate \(\xi\) of the point x. The finite element interpolation formula can afterwards be applied to evaluate the desired displacement field \((u^{fine}(x)=\sum _{i}N_i(\xi )u^{coarse}(t_i))\), where \(t_i\) are again the nodes of the tetrahedron.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rouwane, A., Doumalin, P., Bouclier, R. et al. Architecture-Driven Digital Volume Correlation: Application to the Analysis of In-Situ Crushing of a Polyurethane Foam. Exp Mech 63, 897–913 (2023). https://doi.org/10.1007/s11340-023-00957-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-023-00957-8

Keywords

Navigation