Skip to main content
Log in

Field Displacement-Based Inverse Method for Elastic and Viscoelastic Constitutive Properties

  • Research paper
  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

Background

Mechanical characterization of materials that solely relies on global responses may overlook important local behavior that significantly affects the characterization of material properties. Field displacements such as from digital image correlation (DIC) can provide high-fidelity experimental data, which combined with finite element method (FEM) can form DIC-FEM inverse method that can better account for complex mechanical properties of materials. Despite its capability, the DIC-FEM inverse method has been mainly applied to an elastic-dominant regime even though inelastic deformation is important in many engineering materials. Specifically, the DIC-FEM inverse method has not been fully extended to viscoelastic materials due to the complex representation of the time-dependent modulus.

Objective

This study aimed at establishing a DIC-FEM inverse framework to identify constitutive properties of homogeneous elastic and viscoelastic materials.

Methods

Two example materials (i.e., polyetheretherketone (PEEK) and a viscoelastic fine aggregate matrix (FAM) with a bituminous binder) were selected for the elastic and viscoelastic investigation, respectively. Both were experimentally tested using three-point bending incorporated with DIC. FEM simulated the experiment and the Nelder-Mead nonlinear optimization algorithm was implemented to solve the inverse problem.

Results

The DIC-FEM inverse method successfully identified Young’s modulus of an example linear elastic PEEK and the linear viscoelastic relaxation modulus of FAM.

Conclusions

The resulting DIC-FEM inverse method is applicable to various materials with inelastic deformation and can be extended to localized behavior induced by microstructure heterogeneity and fracture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Zhao J, Dong J, Liu Z, Xie H (2019) Characterization method of mechanical properties of rubber materials based on in-situ stereo finite-element-model updating. Polym Testing 79:106015

    Article  Google Scholar 

  2. Chu T, Ranson W, Sutton MA (1985) Applications of digital-image-correlation techniques to experimental mechanics. Exp Mech 25(3):232–244. https://doi.org/10.1007/BF02325092

    Article  Google Scholar 

  3. McCormick N, Lord J (2010) Digital image correlation. Mater Today 13(12):52–54. https://doi.org/10.1016/S1369-7021(10)70235-2

    Article  Google Scholar 

  4. Bruck H, McNeill S, Sutton MA, Peters W (1989) Digital image correlation using Newton-Raphson method of partial differential correction. Exp Mech 29(3):261–267

    Article  Google Scholar 

  5. Yoneyama S (2016) Basic principle of digital image correlation for in-plane displacement and strain measurement. Adv Compos Mater 25(2):105–123. https://doi.org/10.1080/09243046.2015.1129681

    Article  Google Scholar 

  6. Shen B, Paulino G (2011) Direct extraction of cohesive fracture properties from digital image correlation: a hybrid inverse technique. Exp Mech 51(2):143–163

    Article  Google Scholar 

  7. Shao X, Dai X, He X (2015) Noise robustness and parallel computation of the inverse compositional Gauss-Newton algorithm in digital image correlation. Opt Lasers Eng 71:9–19. https://doi.org/10.1016/j.optlaseng.2015.03.005

    Article  Google Scholar 

  8. Gajewski T, Garbowski T (2014) Calibration of concrete parameters based on digital image correlation and inverse analysis. Archives of Civil and Mechanical Engineering 14(1):170–180. https://doi.org/10.1016/j.acme.2013.05.012

    Article  Google Scholar 

  9. Genovese K, Casaletto L, Humphrey JD, Lu J (2014) Digital image correlation-based point-wise inverse characterization of heterogeneous material properties of gallbladder in vitro. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 470(2167):20140152

    Article  MathSciNet  MATH  Google Scholar 

  10. Sutton M, Wolters W, Peters W, Ranson W, McNeill S (1983) Determination of displacements using an improved digital correlation method. Image Vis Comput 1(3):133–139

    Article  Google Scholar 

  11. Sutton M, Mingqi C, Peters W, Chao Y, McNeill S (1986) Application of an optimized digital correlation method to planar deformation analysis. Image Vis Comput 4(3):143–150

    Article  Google Scholar 

  12. Jiang Y, Li G-Y, Qian L-X, Hu X-D, Liu D, Liang S, Cao Y (2015) Characterization of the nonlinear elastic properties of soft tissues using the supersonic shear imaging (SSI) technique: inverse method, ex vivo and in vivo experiments. Med Image Anal 20(1):97–111

    Article  Google Scholar 

  13. He W, Goudeau P, Le Bourhis E, Renault P-O, Dupré JC, Doumalin P, Wang S (2016) Study on Young’s modulus of thin films on Kapton by microtensile testing combined with dual DIC system. Surf Coat Technol 308:273–279

    Article  Google Scholar 

  14. He W, Han M, Goudeau P, Le Bourhis E, Renault P-O, Wang S, Li L-A (2018) Strain transfer through film-substrate interface and surface curvature evolution during a tensile test. Appl Surf Sci 434:771–780

    Article  Google Scholar 

  15. He W, Duan Q, Shi W, Xie H (2019) Elastic property characterization of soft substrate-supported thin films using multiscale digital image correlation. Opt Lasers Eng 121:112–119

    Article  Google Scholar 

  16. Tuninetti V, Gilles G, Péron-Lührs V, Habraken A (2012) Compression test for metal characterization using digital image correlation and inverse modeling. Procedia IUTAM 4:206–214

    Article  Google Scholar 

  17. Laurin F, Charrier J-S, Lévêque D, Maire J-F, Mavel A, Nuñez P (2012) Determination of the properties of composite materials thanks to digital image correlation measurements. Procedia IUTAM 4:106–115

    Article  Google Scholar 

  18. Caminero MA, Lopez-Pedrosa M, Pinna C, Soutis C (2013) Damage monitoring and analysis of composite laminates with an open hole and adhesively bonded repairs using digital image correlation. Compos B Eng 53:76–91

    Article  Google Scholar 

  19. Ghiassi B, Xavier J, Oliveira DV, Lourenço PB (2013) Application of digital image correlation in investigating the bond between FRP and masonry. Compos Struct 106:340–349

    Article  Google Scholar 

  20. Kubo S (1988) Inverse problems related to the mechanics and fracture of solids and structures. JSME international journal. Ser. 1. Solid Mechanics, Strength Mater 31(2):157–166

  21. Lin L, Li H, Fok AS, Joyce M, Marrow J (2008) Characterization of heterogeneity and nonlinearity in material properties of nuclear graphite using an inverse method. J Nucl Mater 381(1–2):158–164. https://doi.org/10.1016/j.jnucmat.2008.07.042

    Article  Google Scholar 

  22. Lin L, Li H, Fok AS, Joyce M, Marrow TJ (2006) Characterization of material properties using an inverse method. Vol. 5. Trans Tech Publ

  23. Nguyen T, Boyce B (2011) An inverse finite element method for determining the anisotropic properties of the cornea. Biomech Model Mechanobiol 10(3):323–337. https://doi.org/10.1007/s10237-010-0237-3

    Article  Google Scholar 

  24. Kim SK, Jung BS, Kim HJ, Lee WI (2003) Inverse estimation of thermophysical properties for anisotropic composite. Exp Thermal Fluid Sci 27(6):697–704. https://doi.org/10.1016/S0894-1777(02)00309-6

    Article  Google Scholar 

  25. Schnur DS, Zabaras N (1992) An inverse method for determining elastic material properties and a material interface. Int J Numer Meth Eng 33(10):2039–2057. https://doi.org/10.1002/nme.1620331004

    Article  MATH  Google Scholar 

  26. Mathieu F, Leclerc H, Hild F, Roux S (2015) Estimation of elastoplastic parameters via weighted FEMU and integrated-DIC. Exp Mech 55(1):105–119

    Article  Google Scholar 

  27. Pan B (2018) Digital image correlation for surface deformation measurement: historical developments, recent advances and future goals. Meas Sci Technol 29(8):082001

    Article  Google Scholar 

  28. Grédiac M (1989) Principe des travaux virtuels et identification. Comptes rendus de l'Académie des sciences. Série 2, Mécanique, Physique, Chimie. Sciences de l'univers, Sciences de la Terre 309(1):1–5

  29. Pierron F, Grédiac M (2012) The virtual fields method: extracting constitutive mechanical parameters from full-field deformation measurements. Springer Science & Business Media

  30. Pierron F, Forquin P (2012) Ultra-high-speed full-field deformation measurements on concrete spalling specimens and stiffness identification with the virtual fields method. Strain 48(5):388–405

    Article  Google Scholar 

  31. Brigham J, Aquino W, Mitri F, Greenleaf JF, Fatemi M (2007) Inverse estimation of viscoelastic material properties for solids immersed in fluids using vibroacoustic techniques. J Appl Phys 101(2):023509. https://doi.org/10.1063/1.2423227

    Article  Google Scholar 

  32. Lutif JE, Souza FV, Kim YR, Soares JB and Allen DH (2010) Multiscale modeling to predict mechanical behavior of asphalt mixtures. Trans Res Rec 2181(1):28–35. https://doi.org/10.3141/2181-04

  33. Shen B, Stanciulescu I, Paulino GH (2010) Inverse computation of cohesive fracture properties from displacement fields. Inverse Probl Sci Eng 18(8):1103–1128

    Article  MATH  Google Scholar 

  34. Shen B, Paulino GH (2011) Identification of cohesive zone model and elastic parameters of fiber-reinforced cementitious composites using digital image correlation and a hybrid inverse technique. Cement Concr Compos 33(5):572–585

    Article  Google Scholar 

  35. Shen B, Functionally graded fiber-reinforced cementitious composites—Manufacturing and extraction of cohesive fracture properties using finite elements and digital image correlation. Civil Engineering. Vol. Doctor of Philosophy. (2009) Urbana. University of Illinois at Urbana-Champaign, Illinois

    Google Scholar 

  36. Geymonat G, Hild F, Pagano S (2002) Identification of elastic parameters by displacement field measurement. CR Mec 330(6):403–408. https://doi.org/10.1016/S1631-0721(02)01476-6

    Article  MATH  Google Scholar 

  37. Kiełczyński P, Szalewski M (2011) An inverse method for determining the elastic properties of thin layers using Love surface waves. Inverse Problems in Science and Engineering 19(1):31–43. https://doi.org/10.1080/17415977.2010.531472

    Article  MATH  Google Scholar 

  38. Ruggiero L, Sol H, Sahli H, Adriaenssens S, Adriaenssens N (2011) An inverse method to determine material properties of soft tissues. Mechanics of Biological Systems and Materials 2:19–32. https://doi.org/10.1007/978-1-4614-0219-0_3

    Article  Google Scholar 

  39. Lin L (2009) Characterization of Material Properties Using Inverse Method Ann Arbor: The University of Manchester (United Kingdom). 209. https://scholar.uwindsor.ca/etd/4825

  40. Mathieu F, Leclerc H, Hild F and Roux S (2015) Estimation of elastoplastic parameters via weighted FEMU and integrated-DIC. Experimen Mech 55:105–119

  41. de-Carvalho R, Valente RAF, Andrade-Campos A (2011) Optimization strategies for non-linear material parameters identification in metal forming problems. Comp and Struct 89:246–255

  42. Gajewski M, Kowalewski L (2016) Inverse analysis and DIC as tools to determine material parameters in isotropic metal plasticity with isotropic strain hardening. Mater Test 58(10). https://doi.org/10.3139/120.110925

  43. Im S, Kim Y-R, Ban H (2013) Rate-and Temperature-Dependent Fracture Characteristics of Asphaltic Paving Mixtures. J Test Eval 41(2):257–268

    Article  Google Scholar 

  44. Kim YR, Teixeira JE, Kommidi SR, Little DN, Aragao FT, Manrique‐Sanchez L, Souza FV (2021) Rate‐dependent fracture modeling of bituminous media using nonlinear viscoelastic cohesive zone with Gaussian damage function. Comput -Aided Civ Infrastruct Eng

  45. Abaqus V (2014) 6.14 Documentation, in Dassault Systemes Simulia Corporation 6.2

  46. Kowalewski Ł, Gajewski M (2019) Assessment of Optimization Methods Used to Determine Plasticity Parameters Based on DIC and back Calculation Methods. Exp Tech 43(4):385–396

    Article  Google Scholar 

  47. Sutton MA, Orteu JJ, Schreier H (2009) Image correlation for shape, motion and deformation measurements: basic concepts, theory and applications. Springer Science & Business Media

  48. Negahban M (2012) The mechanical and thermodynamical theory of plasticity. Crc New York, NY

    Book  MATH  Google Scholar 

  49. Vendroux G, Knauss W (1998) Submicron deformation field measurements: Part 2. Improved digital image correlation Experimental Mechanics 38(2):86–92

    Google Scholar 

  50. Lu H, Cary P (2000) Deformation measurements by digital image correlation: implementation of a second-order displacement gradient. Exp Mech 40(4):393–400

    Article  Google Scholar 

  51. Lagarias JC, Reeds JA, Wright MH, Wright PE (1998) Convergence properties of the Nelder-Mead simplex method in low dimensions. SIAM J Optim 9(1):112–147

    Article  MathSciNet  MATH  Google Scholar 

  52. Singer S, Nelder J (2009) Nelder-mead algorithm Scholarpedia 4(7):2928. https://doi.org/10.4249/scholarpedia.2928

    Article  Google Scholar 

  53. Barton RR, Ivey JS Jr (1991). Modifications of the Nelder-Mead simplex method for stochastic simulation response optimization. https://doi.org/10.1109/WSC.1991.185709

    Article  Google Scholar 

  54. Nocedal J and Wright S (2006) Numerical optimization. Springer Science & Business Media

  55. Anderson TL (2017) Fracture mechanics: fundamentals and applications. CRC press

  56. El-Qoubaa Z, Othman R (2015) Characterization and modeling of the strain rate sensitivity of polyetheretherketone’s compressive yield stress. Mater and Des (1980–2015) 66:336–345

  57. Rivard CH, Rhalmi S, Coillard C (2002) In vivo biocompatibility testing of peek polymer for a spinal implant system: a study in rabbits. Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials 62(4):488–498

    Article  Google Scholar 

  58. Chen F, Ou H, Lu B, Long H (2016) A constitutive model of polyether-ether-ketone (PEEK). J Mech Behav Biomed Mater 53:427–433

    Article  Google Scholar 

  59. Chen F, Gatea S, Ou H, Lu B, Long H (2016) Fracture characteristics of PEEK at various stress triaxialities. J Mech Behav Biomed Mater 64:173–186

    Article  Google Scholar 

  60. Aragão FTS, Kim YR (2012) Mode I Fracture Characterization of Bituminous Paving Mixtures at Intermediate Service Temperatures. Exp Mech 52(9):1423–1434. https://doi.org/10.1007/s11340-012-9594-4

    Article  Google Scholar 

  61. Al-Rub RKA, Darabi MK, You T, Masad EA, Little DN (2011) A unified continuum damage mechanics model for predicting the mechanical response of asphalt mixtures and pavements. Int J Roads Airports 1(1):68–84

    Google Scholar 

  62. Im S, You T, Ban H, Kim Y-R (2017) Multiscale testing-analysis of asphaltic materials considering viscoelastic and viscoplastic deformation. Int J Pavement Eng 18(9):783–797

    Article  Google Scholar 

  63. Aragão FTS, Badilla-Vargas GA, Hartmann DA, de Oliveira AD, Kim Y-R (2017) Characterization of temperature-and rate-dependent fracture properties of fine aggregate bituminous mixtures using an integrated numerical-experimental approach. Eng Fract Mech 180:195–212

    Article  Google Scholar 

  64. Kim Y-R, Aragao FT, Allen DH, Little DN (2010) Damage modeling of bituminous mixtures considering mixture microstructure, viscoelasticity, and cohesive zone fracture. Can J Civ Eng 37(8):1125–1136

    Article  Google Scholar 

  65. Ban H, Im S, Kim Y-R (2015) Mixed-mode fracture characterization of fine aggregate mixtures using semicircular bend fracture test and extended finite element modeling. Constr Build Mater 101:721–729

    Article  Google Scholar 

  66. Park S and Schapery R (1999) Methods of interconversion between linear viscoelastic material functions. Part I—A numerical method based on Prony series. Int J Solid Struct 36(11):1653–1675

  67. Newcomb D, Martin AE, Yin F, Arambula E, Park ES, Chowdhury A, Brown R, Rodezno C, Tran N, Coleri E (2015) Short-term laboratory conditioning of asphalt mixtures

  68. Wineman AS and Rajagopal KR (2000) Mechanical response of polymers: an introduction. Cambridge University Press

  69. Haque A (2019) Timoshenko Beam Theory. Independently published

  70. Gutierrez-Lemini D (2014) Engineering viscoelasticity. Springer

  71. Cowper G (1966) The shear coefficient in Timoshenko’s beam theory

  72. Sobieraj MC, Kurtz SM, Rimnac CM (2009) Notch sensitivity of PEEK in monotonic tension. Biomaterials 30(33):6485–6494

    Article  Google Scholar 

  73. Kurtz SM (2019) PEEK biomaterials handbook. William Andrew

  74. Jaekel DJ, MacDonald DW, Kurtz SM (2011) Characterization of PEEK biomaterials using the small punch test. J Mech Behav Biomed Mater 4(7):1275–1282

    Article  Google Scholar 

  75. Lesiuk G, Sawicka A, Correia J, Frątczak R (2017) Fracture resistance analysis of PEEK-polymer. Engineering Structures and Technologies 9(4):207–213

    Article  Google Scholar 

  76. Tschoegl NW, Knauss WG, Emri I (2002) Poisson’s ratio in linear viscoelasticity–a critical review. Mechanics of Time-Dependent Materials 6(1):3–51

    Article  Google Scholar 

  77. Lu H, Zhang X, Knauss W (1997) Uniaxial, shear, and Poisson relaxation and their conversion to bulk relaxation: studies on poly (methyl methacrylate). Polym Compos 18(2):211–222

    Article  Google Scholar 

Download references

Funding

Partial financial support was received from the Texas A&M Engineering Experiment Station.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y-R. Kim.

Ethics declarations

Competing Interests

The authors have no competing interests to declare that are relevant to the content of this article.

Conflicts of Interests

The authors have no conflicting interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nsengiyumva, G., Kim, YR. Field Displacement-Based Inverse Method for Elastic and Viscoelastic Constitutive Properties. Exp Mech 62, 1553–1568 (2022). https://doi.org/10.1007/s11340-022-00876-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-022-00876-0

Keywords

Navigation