Skip to main content
Log in

Mode I Fracture Characterization of Bituminous Paving Mixtures at Intermediate Service Temperatures

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

This study presents an integrated approach combining experimental tests and numerical modeling to characterize mode I fracture behavior of bituminous paving mixtures subjected to a wide range of loading rates at intermediate temperature conditions. A simple experimental protocol is developed using the semi-circular bending (SCB) test geometry. The local fracture behavior at the initial notch tip of the SCB specimens is monitored using high-speed cameras with a digital image correlation (DIC) system. The DIC results of the SCB fracture tests are then simulated using a finite element method that is incorporated with material viscoelasticity and cohesive zone fracture. Fracture properties are obtained locally at the notch tip by identifying two cohesive zone fracture parameters (cohesive strength and fracture energy) that result in a good agreement between test results and numerical simulations. The results clearly present significant rate-dependent fracture characteristics of bituminous paving mixtures at intermediate service temperatures. This study further demonstrates that fracture properties of viscoelastic materials need to be characterized at the local fracture process zone when they present ductile fracture behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Bazant ZP, Planas J (1998) Fracture and size effect in concrete and other quasibrittle materials. CRC Press

  2. Chong KP, Li VC, Einstein HN (1989) Size effects, process zone and tension softening behavior in fracture of geomaterials. Eng Fract Mech 34(3):669–678

    Article  Google Scholar 

  3. Soares JB, Freitas FA, Allen DH (2003) Crack modeling of asphaltic mixtures considering heterogeneity of the material. Transp Res Rec 1832:113–120

    Article  Google Scholar 

  4. Li X, Marasteanu MO (2005) Cohesive modeling of fracture in asphalt mixtures at low temperatures. Int J Fract 136:285–308

    Article  Google Scholar 

  5. Song SH, Paulino GH, Buttlar WG (2006) A bilinear cohesive zone model tailored for fracture of asphalt concrete considering viscoelastic bulk material. Eng Fract Mech 73(18):2829–2847

    Article  Google Scholar 

  6. Aragão FTS, Kim YR, Lee J, Allen DH (2011) Micromechanical model for heterogeneous asphalt concrete mixtures subjected to fracture failure. J Mater Civ Eng 23(1):30–38

    Article  Google Scholar 

  7. Souza FV, Soares JB, Allen DH, Evangelista Jr F (2004) Model for predicting damage evolution in heterogeneous viscoelastic asphaltic mixtures. Transp Res Rec 1891:131–139

    Article  Google Scholar 

  8. Kim YR, Allen DH, Little DN (2007) Computational constitutive model for predicting nonlinear viscoelastic damage and fracture failure of asphalt concrete mixtures. Int J Geomech 7(2):102–110

    Article  Google Scholar 

  9. Kim YR, Allen DH, Little DN (2006) Computational model to predict fatigue damage behavior of asphalt mixtures under cyclic loading. Transp Res Rec 1970:196–206

    Article  Google Scholar 

  10. Kim YR, Allen DH, Little DN (2005) Damage-induced modeling of asphalt mixtures through computational micromechanics and cohesive zone fracture. J Mater Civ Eng 17(5):477–484

    Article  Google Scholar 

  11. Song SH, Wagoner MP, Paulino GH (2008) δ25 crack opening displacement parameter in cohesive zone models: experiments and simulations in asphalt concrete. Fatigue Fract Eng Mater Struct 31:850–856

    Article  Google Scholar 

  12. Kim YR, Aragão FTS, Allen DH, Little DN (2010) Damage modeling of bituminous mixtures through computational micromechanics and cohesive zone fracture. Can J Civ Eng 37:1125–1136

    Article  Google Scholar 

  13. Kim H, Buttlar WG (2009) Finite element cohesive fracture modeling of airport pavements at low temperatures. Cold Reg Sci Technol 57:123–130

    Article  Google Scholar 

  14. Yoon C, Allen DH (1999) Damage dependent constitutive behavior and energy release rate for a cohesive zone in a thermoviscoelastic solid. Int J Fract 96:55–74

    Article  Google Scholar 

  15. Allen DH, Searcy CR (2001) A micromechanical model for a viscoelastic cohesive zone. Int J Fract 107:159–176

    Article  Google Scholar 

  16. Majidzadeh K, Kaufmann EM, Ramsamooj DV (1971) Application of fracture mechanics in the analysis of pavement fatigue. Proc Assoc Asph Paving Technol 40:227–246

    Google Scholar 

  17. Wagoner MP, Buttlar WG, Paulino GH (2005) Development of a single-edge notched beam test for asphalt concrete mixtures. J Test Eval 33(6):452–460

    Google Scholar 

  18. Wagoner MP, Buttlar WG, Paulino GH (2005) Disk-shaped compact tension test for asphalt concrete fracture. Exp Mech 45(3):270–277

    Article  Google Scholar 

  19. Wagoner MP, Buttlar WG, Paulino GH, Blankenship P (2005) Investigation of the fracture resistance of hot-mix asphalt concrete using a disk-shaped compact tension test. Transp Res Rec 1929:183–192

    Article  Google Scholar 

  20. You Z, Buttlar WG (2006) Micromechanical modeling approach to predict compressive dynamic moduli of asphalt mixture using the distinct element method. Transp Res Rec 1970:73–83

    Article  Google Scholar 

  21. Kim H, Buttlar WG (2009) Discrete fracture modeling of asphalt concrete. Int J Solids Struct 46:2593–2604

    Article  MATH  Google Scholar 

  22. Chong KP, Kuruppu MD (1984) New specimen for fracture toughness determination for rock and other materials. Int J Fract 26:R59–R62

    Article  Google Scholar 

  23. Lim IL, Johnston IW, Choi SK, Boland JN (1994) Fracture testing of soft rock with semicircular specimens under three-point bending, Part 2—mixed-mode. Int J Rock Mech Min Sci 31(3):199–212

    Article  Google Scholar 

  24. Adamson RM, Dempsey JP, Mulmule SV (1996) Fracture analysis of semicircular and semicircular-bend geometries. Int J Fract 77(3):213–222

    Article  Google Scholar 

  25. Molenaar AAA, Scarpas A, Liu X, Erkens SMJG (2002) Semicircular bending test, simple but useful? J Assoc Asph Paving Technol 71:794–815

    Google Scholar 

  26. van Rooijen RC, de Bondt AH (2008) Crack propagation performance evaluation of asphaltic mixes using a new procedure based on cyclic semi-circular bending tests. Pavement Cracking: Mechanisms, Modeling, Detection, Testing, and Case Histories. CRC Press, 437–446

  27. Kim YR, Daniel JS, Wen H (2002) Fatigue performance evaluation of WestTrack asphalt mixtures using viscoelastic continuum damage approach. Final Report No. FHWA/NC/2002–004, North Carolina State University

  28. Kim Y, Lee J, Lutif JES (2010) Geometrical evaluation and experimental verification to determine representative volume elements of heterogeneous asphalt mixtures. J Test Eval 38(6):660–666

    Google Scholar 

  29. Seo Y, Kim YR, Witczak MW, Bonaquist R (2002) Application of digital image correlation method to mechanical testing of asphalt-aggregate mixtures. Transp Res Rec 1789:162–172

    Article  Google Scholar 

  30. Birgisson B, Montepara A, Romeo E, Roque R, Roncellla R, Tebaldi G (2007) Determination of fundamental tensile failure limits of mixtures. J Assoc Asph Paving Technol 76:303–344

    Google Scholar 

  31. Shen B, Paulino GH (2011) Direct extraction of cohesive fracture properties from digital image correlation: a hybrid inverse technique. Exp Mech 51:143–163

    Article  Google Scholar 

  32. Shen B, Paulino GH (2011) Identification of cohesive zone model and elastic parameters of fiber-reinforced cementitious composites using digital image correlation and a hybrid inverse technique. Cem Concr Compos 33:572–585

    Article  Google Scholar 

  33. Li X, Marasteanu MO (2004) Evaluation of the low temperature fracture resistance of asphalt mixtures using the semi circular bend test. J Assoc Asph Paving Technol 73:401–426

    Google Scholar 

  34. Geubelle P, Baylor J (1998) Impact-induced delamination of laminated composites: a 2D simulation. Compos B Eng 29(5):589–602

    Article  Google Scholar 

  35. Espinosa HD, Zavattieri PD (2003) A grain level model for the study of failure initiation and evolution in polycrystalline brittle materials, part I: theory and numerical implementation. Mech Mater 35:333–364

    Article  Google Scholar 

  36. Rahul-Kumar P, Jagota A, Benninson SJ, Saigal S, Muralidhar S (1999) Polymer interfacial fracture simulations using cohesive elements. Acta Mater 47(15):4161–4169

    Article  Google Scholar 

  37. Nguyen TD, Govindjee S, Klein PA, Gao H (2004) A rate-dependent cohesive continuum model for the study of crack dynamics. Comput Methods Appl Mech Eng 193:3239–3265

    Article  MATH  Google Scholar 

  38. Marzi S, Hesebeck O, Brede M, Kleiner F (2009) A rate-dependent cohesive zone model for adhesively bonded joints loaded in mode I. J Adhes Sci Technol 23:881–898

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the financial support from the Texas A&M Research Foundation, the Western Research Institute, and the Federal Highway Administration. We also thank the BM3 Laboratory in College of Engineering at the University of Nebraska-Lincoln for the DIC system used to complete this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y.-R. Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aragão, F.T.S., Kim, YR. Mode I Fracture Characterization of Bituminous Paving Mixtures at Intermediate Service Temperatures. Exp Mech 52, 1423–1434 (2012). https://doi.org/10.1007/s11340-012-9594-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-012-9594-4

Key Words

Navigation