Skip to main content
Log in

Adaptive Rotated Gaussian Weighted Digital Image Correlation (RGW-DIC) for Heterogeneous Deformation Measurement

  • Research paper
  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

Background

Digital image correlation (DIC) has advanced to become a flexible, reliable and fast optical method for the measurement of non-contact and full-field surface deformation. However, the accuracy of existing methods in measuring heterogeneous deformation fields—especially for the high gradient strain field – can be improved.

Objective

In state-of-art local DIC applications, several methods have been put forward to adapt a subset to unknown deformation. Although improvements in performance using these methods are obtained, results are still ungratified for severely heterogeneous deformation such as the Star 2 and Star 5 images from DIC Challenge 2.0.

Methods

In this paper, a rotated Gaussian weighted zero-mean normalized sum of squared difference (RGW-ZNSSD) criterion function is proposed as the basis for RGW-DIC subset size adaptation. RGW-DIC can automatically determine the optimum weight distribution, hence self-adaptivity in subset size and orientation are achieved simultaneously.

Results

The effectiveness of the proposed RGW-DIC is verified using DIC-challenge 2.0 images and simulated sinusoidal deformation images. Results reveal that the adaptively determined subset weight distribution can significantly improve the accuracy of heterogeneous deformation measurement compared with traditional DIC and DIC with isotropic Gaussian weight functions.

Conclusions

The proposed RGW-DIC can be applied to unknown severely heterogeneous deformation measurement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Pan B, Xie H, Guo Z, Hua T (2007) Full-field strain measurement using a two-dimensional Savitzky-Golay digital differentiator in digital image correlation. Opt Eng 46. https://doi.org/10.1117/1.2714926

  2. Zhao J, Song Y, Wu X (2015) Fast Hermite element method for smoothing and differentiating noisy displacement field in digital image correlation. Opt Lasers Eng 68:25–34. https://doi.org/10.1016/j.optlaseng.2014.12.010

    Article  Google Scholar 

  3. Zhao J, Zeng P, Pan B et al (2012) Improved Hermite finite element smoothing method for full-field strain measurement over arbitrary region of interest in digital image correlation. Opt Lasers Eng 50:1662–1671. https://doi.org/10.1016/j.optlaseng.2012.04.008

    Article  Google Scholar 

  4. Li X, Fang G, Zhao J et al (2019) Local Hermite (LH) Method: An accurate and robust smooth technique for high-gradient strain reconstruction in digital image correlation. Opt Lasers Eng 112:26–38. https://doi.org/10.1016/j.optlaseng.2018.08.022

    Article  Google Scholar 

  5. Li X, Fang G, Zhao J et al (2019) A practical and effective regularized polynomial smoothing (RPS) method for high-gradient strain field measurement in digital image correlation. Opt Lasers Eng 121:215–226. https://doi.org/10.1016/j.optlaseng.2019.04.017

    Article  Google Scholar 

  6. Pan B, Xie H, Wang Z (2010) Equivalence of digital image correlation criteria for pattern matching. Appl Opt 49:5501–5509. https://doi.org/10.1364/AO.49.005501

    Article  Google Scholar 

  7. Schreier H, Orteu JJ, Sutton MA (2009) Image correlation for shape, motion and deformation measurements: Basic concepts, theory and applications. Springer, US

    Book  Google Scholar 

  8. Tu P, Liu X (2017) An Error Criterion in Digital Image Correlation for Unknown Deformation Fields and Its Application of Parameters Selection. Exp Mech 57:783–799. https://doi.org/10.1007/s11340-017-0268-0

    Article  Google Scholar 

  9. Tong W (2005) An evaluation of digital image correlation criteria for strain mapping applications. Strain 41:167–175. https://doi.org/10.1111/j.1475-1305.2005.00227.x

    Article  Google Scholar 

  10. Pan B, Xie H, Wang Z et al (2008) Study on subset size selection in digital image correlation for speckle patterns. Opt Express 16:7037. https://doi.org/10.1364/oe.16.007037

    Article  Google Scholar 

  11. Liu J, Iskander M (2004) Adaptive cross correlation for imaging displacements in soils. J Comput Civ Eng 18:46–57. https://doi.org/10.1061/(ASCE)0887-3801(2004)18:1(46)

    Article  Google Scholar 

  12. Wang ZY, Li HQ, Tong JW, Ruan JT (2007) Statistical analysis of the effect of intensity pattern noise on the displacement measurement precision of digital image correlation using self-correlated images. Exp Mech 47:701–707. https://doi.org/10.1007/s11340-006-9005-9

    Article  Google Scholar 

  13. Pan B, Li K, Tong W (2013) Fast, Robust and Accurate Digital Image Correlation Calculation Without Redundant Computations. Exp Mech 53:1277–1289. https://doi.org/10.1007/s11340-013-9717-6

    Article  Google Scholar 

  14. Schreier HW, Sutton MA (2002) Systematic errors in digital image correlation due to undermatched subset shape functions. Exp Mech 42:303–310. https://doi.org/10.1177/001448502321548391

    Article  Google Scholar 

  15. Yu L, Pan B (2015) The errors in digital image correlation due to overmatched shape functions. Meas Sci Technol 26. https://doi.org/10.1088/0957-0233/26/4/045202

  16. Huizinga W, Klein S, Poot DHJ (2014) Fast multidimensional B-spline interpolation using template metaprogramming. Lect Notes Comput Sci (including Subser Lect Notes Artif Intell Lect Notes Bioinformatics) 8545 LNCS:11–20. https://doi.org/10.1007/978-3-319-08554-8_2

  17. Su Y, Zhang Q, Gao Z et al (2015) Fourier-based interpolation bias prediction in digital image correlation. Opt Express 23:19242. https://doi.org/10.1364/oe.23.019242

    Article  Google Scholar 

  18. Wang YQ, Sutton MA, Bruck HA, Schreier HW (2009) Quantitative error assessment in pattern matching: Effects of intensity pattern noise, interpolation, strain and image contrast on motion measurements. Strain 45:160–178. https://doi.org/10.1111/j.1475-1305.2008.00592.x

    Article  Google Scholar 

  19. Rossi M, Lava P, Pierron F et al (2015) Effect of DIC spatial resolution, noise and interpolation error on identification results with the VFM. Strain 51:206–222. https://doi.org/10.1111/str.12134

    Article  Google Scholar 

  20. Zitová B, Flusser J (2003) Image registration methods: A survey. Image Vis Comput 21:977–1000. https://doi.org/10.1016/S0262-8856(03)00137-9

    Article  Google Scholar 

  21. Kehoe L, Lynch P, Guénebaut V (2006) Measurement of deformation and strain in first level C4 interconnect and stacked die using optical digital image correlation. IMAPS Int Conf Exhib Device Packag - Co-located with Glob Bus Counc GBC 2006 Spring Conf 1874–1881

  22. Ke XD, Schreier HW, Sutton MA, Wang YQ (2011) Error Assessment in Stereo-based Deformation Measurements. Exp Mech 51:423–441. https://doi.org/10.1007/s11340-010-9450-3

    Article  Google Scholar 

  23. Yaofeng S, Pang JHL (2007) Study of optimal subset size in digital image correlation of speckle pattern images. Opt Lasers Eng 45:967–974. https://doi.org/10.1016/j.optlaseng.2007.01.012

    Article  Google Scholar 

  24. Zhao J (2016) Deformation measurement using digital image correlation by adaptively adjusting the parameters. Opt Eng 55:124104. https://doi.org/10.1117/1.oe.55.12.124104

    Article  Google Scholar 

  25. Wang B, Pan B (2019) Self-Adaptive Digital Volume Correlation for Unknown Deformation Fields. Exp Mech 59:149–162. https://doi.org/10.1007/s11340-018-00455-2

    Article  Google Scholar 

  26. Wang B, Pan B (2019) Anisotropic self-adaptive digital volume correlation with optimal cuboid subvolumes. Meas Sci Technol 30. https://doi.org/10.1088/1361-6501/ab2f82

  27. Wittevrongel L, Lava P, Lomov SV, Debruyne D (2015) A Self Adaptive Global Digital Image Correlation Algorithm. Exp Mech 55:361–378. https://doi.org/10.1007/s11340-014-9946-3

    Article  Google Scholar 

  28. Hoefnagels JPM, Kleinendorst SM, Ruybalid AP et al (2017) Self-adaptive isogeometric global digital image correlation and digital height correlation. Conf Proc Soc Exp Mech Ser 3:165–172. https://doi.org/10.1007/978-3-319-41600-7_20

    Article  Google Scholar 

  29. Hild F, Roux S (2012) Comparison of Local and Global Approaches to Digital Image Correlation. Exp Mech 52:1503–1519. https://doi.org/10.1007/s11340-012-9603-7

    Article  Google Scholar 

  30. Yang J, Bhattacharya K (2018) Fast Adaptive Global Digital Image Correlation

  31. Huang J, Pan X, Peng X et al (2013) Digital Image Correlation with Self-Adaptive Gaussian Windows. Exp Mech 53:505–512. https://doi.org/10.1007/s11340-012-9639-8

    Article  Google Scholar 

  32. Yuan Y, Huang J, Peng X et al (2014) Accurate displacement measurement via a self-adaptive digital image correlation method based on a weighted ZNSSD criterion. Opt Lasers Eng 52:75–85. https://doi.org/10.1016/j.optlaseng.2013.07.016

    Article  Google Scholar 

  33. Yuan Y, Huang J, Fang J et al (2015) A self-adaptive sampling digital image correlation algorithm for accurate displacement measurement. Opt Lasers Eng 65:57–63. https://doi.org/10.1016/j.optlaseng.2014.05.006

    Article  Google Scholar 

  34. Reu PL (2018) 2D Challenge 2.0 Discussion Document. United States

  35. Pan B, Xie HM, Xu BQ, Dai FL (2006) Performance of sub-pixel registration algorithms in digital image correlation. In: Measurement Science and Technology. Institute of Physics Publishing, pp 1615–1621

  36. Chen W, Jiang Z, Tang L et al (2017) Equal Noise Resistance of Two Mainstream Iterative Sub-pixel Registration Algorithms in Digital Image Correlation. Exp Mech 57:979–996. https://doi.org/10.1007/s11340-017-0294-y

    Article  Google Scholar 

  37. Baker S, Matthews I (2004) Lucas-Kanade 20 Years On : A Unifying Framework : Part 1 2 Background : Lucas-Kanade. Int J Comput Vis 56:221–255. https://doi.org/10.1023/B:VISI.0000011205.11775.fd

    Article  MATH  Google Scholar 

  38. Gao Y, Cheng T, Su Y et al (2015) High-efficiency and high-accuracy digital image correlation for three-dimensional measurement. Opt Lasers Eng 65:73–80. https://doi.org/10.1016/j.optlaseng.2014.05.013

    Article  Google Scholar 

  39. Baker S, Matthews I (2004) Lucas-Kanade 20 years on: A unifying framework. Int J Comput Vis 56:221–255. https://doi.org/10.1023/B:VISI.0000011205.11775.fd

    Article  MATH  Google Scholar 

  40. Pan B (2009) Reliability-guided digital image correlation for image deformation measurement. Appl Opt 48:1535–1542. https://doi.org/10.1364/AO.48.001535

    Article  Google Scholar 

  41. Xu X, Su Y, Zhang Q (2017) Theoretical estimation of systematic errors in local deformation measurements using digital image correlation. Opt Lasers Eng 88:265–279. https://doi.org/10.1016/j.optlaseng.2016.08.016

    Article  Google Scholar 

  42. Xu X, Su Y, Cai Y et al (2015) Effects of Various Shape Functions and Subset Size in Local Deformation Measurements Using DIC. Exp Mech 55:1575–1590. https://doi.org/10.1007/s11340-015-0054-9

    Article  Google Scholar 

  43. Lu H, Cary PD (2000) Deformation measurements by digital image correlation: Implementation of a second-order displacement gradient. Exp Mech 40:393–400. https://doi.org/10.1007/BF02326485

    Article  Google Scholar 

  44. Wang B, Pan B (2015) Random Errors in Digital Image Correlation Due to Matched or Overmatched Shape Functions. Exp Mech 55:1717–1727. https://doi.org/10.1007/s11340-015-0080-7

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by the National Natural Science Foundation of China under grant 51705279, Tsinghua University Scientific Research Found and National S&T Major Project (Grant No. ZX069). We thank Benoît Blaysat, PhD (University Clermont Auvergne, France) for providing the spatial resolution calculating code.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Zhao.

Ethics declarations

Conflict of Interests

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, X., Zhao, J. Adaptive Rotated Gaussian Weighted Digital Image Correlation (RGW-DIC) for Heterogeneous Deformation Measurement. Exp Mech 62, 271–286 (2022). https://doi.org/10.1007/s11340-021-00790-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-021-00790-x

Keywords

Navigation