Skip to main content
Log in

On the Correlation of FEM and Experiments for Hyperelastic Elastomers

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

Correlation of modern finite element methods (FEM) with advanced experimental techniques for elastomers, biomedical materials, and living organs requires study and modification of the behavior of these materials. In this study, the mechanical behavior of a commonly-used elastomer, silicone rubber, which provides excellent biocompatibility, was examined under different applied loading configurations, and large deformations were investigated through both experiment and simulation. The stress-strain behaviors of silicone rubber were tested, using multiple homogeneous experiments, including uniaxial extension and equibiaxial tension, the load-apex displacement response, and digitized deformed shapes of two of the most-used structures for nonlinear hyperelasticity—the inflation of a clamped circular membrane, and indentation of the membrane by a spherical indenter. Uniaxial and equibiaxial data were evaluated simultaneously, characterized by various constitutive models for implementation in the FE simulation. These constitutive models examined the prediction of the FE simulations for the inflation and indentation tests in comparison to the results of experiments at various load-apex displacement levels. The results showed that the constitutive models calibrated with the uniaxial and equibiaxial tests, predicted nearly the same results as the actual experimental results, particularly for the applied loads that generated moderate strain. However, when the FE simulations based on the constitutive models were adjusted, employing only uniaxial or equibiaxial tests, they predicted different results, where the degree of their correlations with experimental results was incomplete or in some states simply poor. The simulations suggested that the inverse FE procedure should not be restricted to the choice of material models, while more attention should be given to the choice of ranges of deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Treloar LRG (1944) Strains in an inflated rubber sheet, and the mechanism of bursting. Rubber Chem Technol 17:957–967

    Article  Google Scholar 

  2. Adkins JE, Rivlin RS (1952) Large elastic deformations of isotropic materials. IX. The deformation of thin shells. Philosophical Transactions of the Royal Society of London. Series A. Math Phys Sci 244:505–531

    Article  MATH  Google Scholar 

  3. Treloar LRG (1943) The elasticity of a network of long-chain molecules-I. Trans Faraday Soc 39:36–41

    Article  Google Scholar 

  4. Treloar LRG (1943) The elasticity of a network of long-chain molecules-II. Trans Faraday Soc 39:241–246

    Article  Google Scholar 

  5. Mooney M (1940) A theory of large elastic deformation. J Appl Phys 11:582–592

    Article  MATH  Google Scholar 

  6. Green AE, Shield RT (1950) Finite elastic deformation of incompressible isotropic bodies. Proceedings of the Royal Society of London. Series A. Math Phys Sci 202:407–419

    Article  MATH  Google Scholar 

  7. Schmidt LR, Carley JF (1975) Biaxial stretching of heat-softened plastic sheets using an inflation technique. Int J Eng Sci 13:563–578

    Article  Google Scholar 

  8. Rivlin RS (1948) Large elastic deformations of isotropic materials. IV. Further developments of the general theory. Philosophical Transactions of the Royal Society of London. Series A. Math Phys Sci 241:379–397

    Article  MATH  Google Scholar 

  9. Pujara P, Lardner TJ (1978) Deformations of elastic membranes—effect of different constitutive relations. Zeitschrift für angewandte Mathematik und Physik ZAMP 29:315–327

    Article  MATH  Google Scholar 

  10. Bhatia NM, Nachbar W (1968) Finite indentation of an elastic membrane by a spherical indenter. Int J Non-Linear Mech 3:307–324

    Article  MATH  Google Scholar 

  11. Jahsman, W.E., Field, F.A., Holmes, A.M.C., 1961. Finite deformations in a Prestressed, centrally loaded circular elastic membrane (no. 6 90 61 36). Lockheed missiles and space co sunnyvale Calif

  12. Yang WH, Hsu KH (1971) Indentation of a circular membrane. J Appl Mech 38:227–230

    Article  Google Scholar 

  13. Przybylo PA, Arruda EM (1998) Experimental investigations and numerical modeling of incompressible elastomers during non-homogeneous deformations. Rubber Chem Technol 71:730–749

    Article  Google Scholar 

  14. Hassager O, Kristensen SB, Larsen JR, Neergaard J (1999) Inflation and instability of a polymeric membrane. J Non-Newtonian Fluid Mech 88:185–204

    Article  MATH  Google Scholar 

  15. Verron E, Marckmann G (2003) Inflation of elastomeric circular membranes using network constitutive equations. Int J Non-Linear Mech 38:1221–1235

    Article  MATH  Google Scholar 

  16. Reuge N, Schmidt FM, Le Maoult Y, Rachik M, Abbé F (2001) Elastomer biaxial characterization using bubble inflation technique. I: Experimental investigations. Polym Eng Sci 41:522–531

    Article  Google Scholar 

  17. Rachik M, Schmidtt F, Reuge N, Le Maoult Y, Abbeé F (2001) Elastomer biaxial characterization using bubble inflation technique. II: Numerical investigation of some constitutive models. Polym Eng Sci 41:532–541

    Article  Google Scholar 

  18. Cloonan AJ, O’Donnell MR, Lee WT, Walsh MT, De Barra E, McGloughlin TM (2012) Spherical indentation of free-standing acellular extracellular matrix membranes. Acta Biomater 8:262–273

    Article  Google Scholar 

  19. Li, P., Jiang, S., Yu, Y., Yang, J., Yang, Z., 2015. Biomaterial characteristics and application of silicone rubber and PVA hydrogels mimicked in organ groups for prostate brachytherapy. Journal of the Mechanical Behavior of Biomedical Materials

    Google Scholar 

  20. Doyle BJ, Corbett TJ, Cloonan AJ, O’Donnell MR, Walsh MT, Vorp DA, McGloughlin TM (2009) Experimental modelling of aortic aneurysms: novel applications of silicone rubbers. Med Eng Phys 31:1002–1012

    Article  Google Scholar 

  21. Bailly L, Toungara M, Orgéas L, Bertrand E, Deplano V, Geindreau C (2014) In-plane mechanics of soft architectured fibre-reinforced silicone rubber membranes. J Mech Behav Biomed Mater 40:339–353

    Article  Google Scholar 

  22. Krone R, Havenstrite K, Shafi B (2013) Mechanical characterization of thin film, water-based polymer gels through simple tension testing of laminated bilayers. J Mech Behav Biomed Mater 27:1–9

    Article  Google Scholar 

  23. Payne T, Mitchell S, Bibb R, Waters M (2015) Development of novel synthetic muscle tissues for sports impact surrogates. J Mech Behav Biomed Mater 41:357–374

    Article  Google Scholar 

  24. Selvadurai APS (2006) Deflections of a rubber membrane. J Mech Phys Solids 54:1093–1119

    Article  MATH  Google Scholar 

  25. Pearce SP, King JR, Holdsworth MJ (2011) Axisymmetric indentation of curved elastic membranes by a convex rigid indenter. Int J Non-Linear Mech 46:1128–1138

    Article  Google Scholar 

  26. Chakravarty UK, Albertani R (2011) Energy absorption behavior of a hyperelastic membrane for micro air vehicle wings: experimental and finite element approaches. Int J Micro Air Veh 3:13–23

    Article  Google Scholar 

  27. Vlad, C., Vlad, S., Prisacaru, G., Olaru, D., 2014. Mechanical testing of elastomers for sensor and actuator applications

    Google Scholar 

  28. Meunier L, Chagnon G, Favier D, Orgéas L, Vacher P (2008) Mechanical experimental characterisation and numerical modelling of an unfilled silicone rubber. Polym Test 27:765–777

    Article  Google Scholar 

  29. Österlöf R, Wentzel H, Kari L (2015) An efficient method for obtaining the hyperelastic properties of filled elastomers in finite strain applications. Polym Test 41:44–54

    Article  Google Scholar 

  30. Selvadurai APS, Shi M (2012) Fluid pressure loading of a hyperelastic membrane. Int J Non-Linear Mech 47:228–239

    Article  Google Scholar 

  31. Jones A, Shaw J, Wineman A (2006) An experimental facility to measure the chemorheological response of inflated elastomeric membranes at high temperature. Exp Mech 46:579–587

    Article  Google Scholar 

  32. Kavanagh KT, Clough RW (1971) Finite element applications in the characterization of elastic solids. Int J Solids Struct 7:11–23

    Article  MATH  Google Scholar 

  33. Iding RH, Pister KS, Taylor RL (1974) Identification of nonlinear elastic solids by a finite element method. Comput Methods Appl Mech Eng 4:121–142

    Article  MATH  Google Scholar 

  34. Wineman A, Wilson D, Melvin JW (1979) Material identification of soft tissue using membrane inflation. J Biomech 12:841–850

    Article  Google Scholar 

  35. Elkut F, Bradley GR, Krywonos J, Fenwick J, Ren XJ (2012) Numerical study of the mechanics of indentation bending tests of thin membranes and inverse materials parameters prediction. Comput Mater Sci 52:123–127

    Article  Google Scholar 

  36. Avril S, Bonnet M, Bretelle AS, Grediac M, Hild F, Ienny P, Pierron F (2008) Overview of identification methods of mechanical parameters based on full-field measurements. Exp Mech 48:381–402

    Article  Google Scholar 

  37. Koncar, I., Nikolic, D., Pantovic, S., Rosic, M., Mijailovic, N., Ilic, N., Filipovic, N.D., (2013, November). Modeling of abdominal aortic aneurism rupture by using experimental bubble inflation test. In Bioinformatics and Bioengineering (BIBE), 2013 I.E. 13th International Conference on (pp. 1–4). IEEE

  38. Rausch MK, Kuhl E (2013) On the effect of prestrain and residual stress in thin biological membranes. J Mech Phys Solids 61:1955–1969

    Article  MathSciNet  Google Scholar 

  39. Kumaraswamy, N., 2014. Characterization of biaxial mechanical properties of rubber and skin (doctoral dissertation)

    Google Scholar 

  40. Holzapfel GA (2000) Nonlinear solid mechanics, vol 24. Wiley, Chichester

    MATH  Google Scholar 

  41. Ogden, R.W., 1972. Large deformation isotropic elasticity-on the correlation of theory and experiment for incompressible rubberlike solids. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 326, 565–584

  42. Mansouri MR, Darijani H (2014) Constitutive modeling of isotropic hyperelastic materials in an exponential framework using a self-contained approach. Int J Solids Struct 51:4316–4326

    Article  Google Scholar 

  43. Ehret, A. E., 2015. On a molecular statistical basis for Ogden's model of rubber elasticity. Journal of the Mechanics and Physics of Solids

    MATH  Google Scholar 

  44. Darijani H, Naghdabadi R (2010) Hyperelastic materials behavior modeling using consistent strain energy density functions. Acta Mech 213:235–254

    Article  MATH  Google Scholar 

  45. Elı́as-Zúñiga A, Beatty MF (2002) Constitutive equations for amended non-Gaussian network models of rubber elasticity. Int J Eng Sci 40:2265–2294

    Article  MathSciNet  MATH  Google Scholar 

  46. Marckmann G, Verron E (2006) Comparison of hyperelastic models for rubber-like materials. Rubber Chem Technol 79:835–858

    Article  Google Scholar 

  47. Steinmann P, Hossain M, Possart G (2012) Hyperelastic models for rubber-like materials: consistent tangent operators and suitability for Treloar’s data. Arch Appl Mech 82:1183–1217

    Article  MATH  Google Scholar 

  48. Martins PALS, Natal Jorge RM, Ferreira AJM (2006) A comparative study of several material models for prediction of hyperelastic properties: application to silicone-rubber and soft tissues. Strain 42:135–147

    Article  Google Scholar 

  49. Nijhof, L.B.G.M., Cubera, M., 2000. Peroxide crosslinking of silicone compounds. Papers-american chemical society division of rubber chemistry, (116).

  50. Mullins L (1969) Softening of rubber by deformation. Rubber Chem Technol 42:339–362

    Article  Google Scholar 

  51. Beatty MF, Krishnaswamy S (2000) A theory of stress-softening in incompressible isotropic materials. J Mech Phys Solids 48:1931–1965

    Article  MathSciNet  MATH  Google Scholar 

  52. Dorfmann A, Ogden RW (2004) A constitutive model for the Mullins effect with permanent set in particle-reinforced rubber. Int J Solids Struct 41:1855–1878

    Article  MATH  Google Scholar 

  53. Diani J, Fayolle B, Gilormini P (2009) A review on the Mullins effect. Eur Polym J 45:601–612

    Article  Google Scholar 

  54. Septanika, E.G., Ernst, L.J., Van Den Hooff, L.A., 1998. An automatic and interactive large-deformation measurement system based on image processing.Experimental mechanics, 38, 181–188

  55. Laraba-Abbes F, Ienny P, Piques R (2003) A new ‘tailor-made’methodology for the mechanical behaviour analysis of rubber-like materials: II. Application to the hyperelastic behaviour characterization of a carbon-black filled natural rubber vulcanizate. Polymer 44:821–840

    Article  Google Scholar 

  56. Chevalier, L., Calloch, S., Hild, F., Marco, Y., 2005. Digital image correlation used to analyze the multiaxial behavior of rubber-like materials. arXiv preprint physics/0511148

  57. Le Cam JB (2012) A review of the challenges and limitations of full-field measurements applied to large heterogeneous deformations of rubbers. Strain 48:174–188

    Article  Google Scholar 

  58. Duncan BC, Crocker LE, Urquhart JM (2000) Evaluation of hyperelastic finite element models for flexible adhesive joints. In: National Physical Laboratory. Centre for Materials Measurement and Technology, Great Britain

    Google Scholar 

  59. Johlitz M, Diebels S (2011) Characterisation of a polymer using biaxial tension tests. Part I: Hyperelasticity. Arch Appl Mech 81:1333–1349

    Article  MATH  Google Scholar 

  60. Kawamura T, Urayama K, Kohjiya S (2001) Multiaxial deformations of end-linked poly (dimethylsiloxane) networks. 1. Phenomenological approach to strain energy density function. Macromolecules 34:8252–8260

    Article  Google Scholar 

  61. Urayama K (2006) An experimentalist's view of the physics of rubber elasticity. J Polym Sci B Polym Phys 44:3440–3444

    Article  Google Scholar 

  62. Mott PH, Roland CM, Hassan SE (2003) Strains in an inflated rubber sheet. Rubber Chem Technol 76:326–333

    Article  Google Scholar 

  63. Drozdov AD (2007) Constitutive equations in finite elasticity of rubbers. Int J Solids Struct 44(1):272–297

    Article  MathSciNet  MATH  Google Scholar 

  64. Ogden RW, Saccomandi G, Sgura I (2004) Fitting hyperelastic models to experimental data. Comput Mech 34:484–502

    Article  MATH  Google Scholar 

  65. Hartmann S (2001) Numerical studies on the identification of the material parameters of Rivlin's hyperelasticity using tension-torsion tests. Acta Mech 148:129–155

    Article  MATH  Google Scholar 

  66. Gendy AS, Saleeb AF (2000) Nonlinear material parameter estimation for characterizing hyper elastic large strain models. Comput Mech 25:66–77

    Article  MATH  Google Scholar 

  67. Nasto A, Ajdari A, Lazarus A, Vaziri A, Reis PM (2013) Localization of deformation in thin shells under indentation. Soft Matter 9:6796–6803

    Article  Google Scholar 

Download references

Acknowledgments

The authors appreciate the intellectual support from Prof. Mohammad Taghi Khorasani from Iran Polymer and Petrochemical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Darijani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mansouri, M.R., Darijani, H. & Baghani, M. On the Correlation of FEM and Experiments for Hyperelastic Elastomers. Exp Mech 57, 195–206 (2017). https://doi.org/10.1007/s11340-016-0236-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-016-0236-0

Keywords

Navigation