Skip to main content
Log in

Investigation of the nonlinear hyper-viscoelastic behavior of elastomers at finite strain: implementation and numerical validation

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Rubber-like materials are known for their time-dependent behavior. The ability to model the hyperviscoelastic behavior of a diverse range of these materials including polymers, elastomers and rubbers is of increasing importance especially in the context of soft tissue mechanics. In this paper, a viscohyperelastic model, recently published, is recalled. The implementation of this hyperviscoelastic model at finite strain into the finite element software Abaqus via a umat subroutine is presented. To this end, the discrete form of the constitutive equations of the stress and the tangent modulus following the Jaumann derivative were determined. Then, the implementation was validated using homogeneous tests of simple extension and simple shear for several history of strain and non-homogeneous test of pure torsion of a hollow cylinder. The semi-analytic resolution of the boundary value problems of each test compared to the results of simulation of the implemented model shows a total validation of the implementation algorithm. The implemented model can, therefore, be used in real engineering and biomechanical applications dealing with hyperviscoelastic models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: The Umat subroutine used in this work can be found in the appendix of the PhD thesis: Contribution to the modelling of the viscoelastic behavior of elastomers with Payne effect, url: http://www.theses.fr/2017LYSEC062.]

References

  1. M. Righi, V. Balbi, Foundations of viscoelasticity and application to soft tissue mechanics, in Modeling Biomaterials. ed. by J. Málek, E. Süli (Springer, Cham, 2021), pp. 71–103. https://doi.org/10.1007/978-3-030-88084-2_3

    Chapter  Google Scholar 

  2. E. Passaglia, H. Koppehele, The strain dependence of stress relaxation in cellulose monofilaments. J. Polym. Sci. 33(126), 281–289 (1958)

    Article  ADS  Google Scholar 

  3. M. Fukuda, K. Osaki, M. Kurata, Nonlinear viscoelasticity of polystyrene solutions. i. strain-dependent relaxation modulus. J. Polym. Sci. Polym. Phys. Edition 13(8), 1563–1576 (1975)

    Article  ADS  Google Scholar 

  4. J. Chen, H. Hu, S. Li, K. Zhang, Quantitative relation between the relaxation time and the strain rate for polymeric solids under quasi-static conditions. J. Appl. Polym. Sci. 133(42), 44114 (2016)

    Google Scholar 

  5. R.Y. Dhume, V.H. Barocas, Emergent structure-dependent relaxation spectra in viscoelastic fiber networks in extension. Acta Biomater. 87, 245–255 (2019)

    Article  Google Scholar 

  6. T. Shearer, W.J. Parnell, B. Lynch, H.R. Screen, I. David Abrahams, A recruitment model of tendon viscoelasticity that incorporates fibril creep and explains strain-dependent relaxation. J. Biomech. Eng. 142(7), 071003 (2020)

    Article  Google Scholar 

  7. M. Hossain, R. Navaratne, D. Perić, 3D printed elastomeric polyurethane: Viscoelastic experimental characterizations and constitutive modelling with nonlinear viscosity functions. Int. J. Non-Linear Mech. 126, 103546 (2020)

    Article  ADS  Google Scholar 

  8. O.J. Aryeetey, M. Frank, A. Lorenz, S.-J. Estermann, A.G. Reisinger, D.H. Pahr, A parameter reduced adaptive quasi-linear viscoelastic model for soft biological tissue in uniaxial tension. J. Mech. Behav. Biomed. Mater. 126, 104999 (2022)

    Article  Google Scholar 

  9. M. Ben Amar, Nonlinear visco-elasticity of soft tissues under cyclic deformations. Int. J. Non-Linear Mech. 106, 238–244 (2018)

    Article  ADS  Google Scholar 

  10. L.R.G. Treloar, The Physics of Rubber Elasticity. Oxford Classic Texts in the Physical Sciences (OUP Oxford, 1975). https://books.google.fr/books?id=EfCZXXKQ50wC

  11. F.J. Lockett, Nonlinear Viscoelastic Solids (Academic Press, London, 1972)

    MATH  Google Scholar 

  12. N.W. Tschoegl, Time dependence in material properties: an overview. Mech. Time-Depend. Mater. 1(1), 3–31 (1997)

    Article  ADS  Google Scholar 

  13. K.C. Valanis, Irreversible Thermodynamics of Continuous Media: Internal Variable Theory. CISM Series. (Springer, 1972). https://books.google.fr/books?id=oqEeAQAAIAAJ

  14. J.C. Simo, T.J.R. Hughes, Computational Inelasticity. Interdisciplinary Applied Mathematics. (Springer, 2000). https://books.google.fr/books?id=ftL2AJL8OPYC

  15. G.A. Holzapfel, On large strain viscoelasticity: continuum formulation and finite element applications to elastomeric structures. Int. J. Numer. Methods Eng. 39(22), 3903–3926 (1996)

    Article  MATH  Google Scholar 

  16. A.D. Drozdov, Finite Elasticity and Viscoelasticity (World scientific, 1996). https://doi.org/10.1142/2905.

  17. P.L. Tallec, Numerical Analysis of Viscoelastic Problems. Recherches en mathématiques appliquées. (Masson, 1990). https://books.google.fr/books?id=3qvgAAAAMAAJ

  18. A. Tayeb, M. Arfaoui, A.M. Zine, A. Hamdi, J. Benabdallah, M. Ichchou, On the nonlinear viscoelastic behavior of rubber-like materials: constitutive description and identification. Int. J. Mech. Sci. 130, 437–447 (2017)

    Article  Google Scholar 

  19. J. Sullivan, A nonlinear viscoelastic model for representing nonfactorizable time-dependent behavior in cured rubber. J. Rheol. 31(3), 271–295 (1987)

    Article  ADS  Google Scholar 

  20. J. Sullivan, K. Mazich, Nonseparable behavior in rubber viscoelasticity. Rubber Chem. Technol. 62(1), 68–81 (1989)

    Article  Google Scholar 

  21. F. Sidoroff, et al., Variables internes in viscoelasticite. I. Variables internes scalaires et tensorielles (1975)

  22. F. Sidoroff, Variables internes en viscoelasticite. II. Milieux avec configuration intermediaire (1975)

  23. A. Wineman, Nonlinear viscoelastic solids—a review. Math. Mech. Solids 14(3), 300–366 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. J. Hristov, Linear viscoelastic responses and constitutive equations in terms of fractional operators with non-singular kernels-pragmatic approach, memory kernel correspondence requirement and analyses. Eur. Phys. J. Plus 134(6), 283 (2019)

    Article  MathSciNet  Google Scholar 

  25. G. Limbert, Constitutive modelling of skin mechanics, in Skin Biophysics: From Experimental Characterisation to Advanced Modelling, vol. 22, ed. by G. Limbert (Springer, Berlin, 2019), pp. 19–76

    Chapter  Google Scholar 

  26. A. Wineman, Viscoelastic Solids, in Constitutive Modelling of Solid Continua. ed. by J. Merodio, R. Ogden (Springer, Cham, 2020), pp. 81–123. https://doi.org/10.1007/978-3-030-31547-4_4

    Chapter  Google Scholar 

  27. A.E. Green, R.S. Rivlin, The mechanics of non-linear materials with memory. Arch. Ration. Mech. Anal. 1(1), 1–21 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  28. A.C. Pipkin, Lectures on Viscoelasticity Theory, vol. 7 (Springer, Berlin, 2012)

    MATH  Google Scholar 

  29. J. Zhou, Y. Song, X. Shi, C. Zhang, Tensile creep mechanical behavior of periodontal ligament: A hyper-viscoelastic constitutive model. Comput. Methods Progr. Biomed. 207, 106224 (2021)

    Article  Google Scholar 

  30. B.D. Coleman, W. Noll, Foundations of linear viscoelasticity. Rev. Mod. Phys. 33(2), 239 (1961)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. R. Christensen, A nonlinear theory of viscoelasticity for application to elastomers (1980)

  32. R. Fosdick, J.-H. Yu, Thermodynamics, stability and non-linear oscillations of viscoelastic solids—II. History type solids. Int. J. Non-linear Mech. 33(1), 165–188 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. R. De Pascalis, I.D. Abrahams, W.J. Parnell, On nonlinear viscoelastic deformations: a reappraisal of Fung’s quasi-linear viscoelastic model. Proc. R. Soc. A: Math. Phys. Eng. Sci. 470(2166), 20140058 (2014)

    Article  Google Scholar 

  34. B. Bernstein, E. Kearsley, L. Zapas, A study of stress relaxation with finite strain. Trans. Soc. Rheol. 7(1), 391–410 (1963)

    Article  MATH  Google Scholar 

  35. R. Batra, J.-H. Yu, Linear constitutive relations in isotropic finite viscoelasticity. J. Elast. 55(1), 73–77 (1999)

    Article  MATH  Google Scholar 

  36. C. Li, J. Lua, A hyper-viscoelastic constitutive model for polyurea. Mater. Lett. 63(11), 877–880 (2009)

    Article  Google Scholar 

  37. V. Slesarenko, S. Rudykh, Towards mechanical characterization of soft digital materials for multimaterial 3D-printing. Int. J. Eng. Sci. 123, 62–72 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  38. H. Guo, Y. Chen, J. Tao, B. Jia, D. Li, Y. Zhai, A viscoelastic constitutive relation for the rate-dependent mechanical behavior of rubber-like elastomers based on thermodynamic theory. Mater. Des. 178, 107876 (2019)

    Article  Google Scholar 

  39. E. Aligholizadeh, M. Yazdani, H. Sabouri, Modeling hyperviscoelastic behavior of elastomeric materials (hdpe/poe blend) at different dynamic biaxial and uniaxial tensile strain rates by a new dynamic tensile-loading mechanism. J. Elastom. Plast. 52(4), 285–303 (2020)

    Article  Google Scholar 

  40. J.C. Simo, On a fully three-dimensional finite-strain viscoelastic damage model: formulation and computational aspects. Comput. Methods Appl. Mech. Eng. 60(2), 153–173 (1987)

    Article  ADS  MATH  Google Scholar 

  41. R.A. Schapery, An engineering theory of nonlinear viscoelasticity with applications. Int. J. Solids Struct. 2(3), 407–425 (1966)

    Article  Google Scholar 

  42. Y.-C.B. Fung, Stress-strain-history relations of soft tissues in simple elongation. Biomechanics its foundations and objectives, 181–208 (1972)

  43. H. Berjamin, M. Destrade, W.J. Parnell, On the thermodynamic consistency of quasi-linear viscoelastic models for soft solids. Mech. Res. Commun. 111, 103648 (2021)

    Article  Google Scholar 

  44. P. Höfer, A. Lion, Modelling of frequency-and amplitude-dependent material properties of filler-reinforced rubber. J. Mech. Phys. Solids 57(3), 500–520 (2009)

    Article  ADS  MATH  Google Scholar 

  45. H. Khajehsaeid, J. Arghavani, R. Naghdabadi, S. Sohrabpour, A visco-hyperelastic constitutive model for rubber-like materials: a rate-dependent relaxation time scheme. Int. J. Eng. Sci. 79, 44–58 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  46. Q. Adam, R. Behnke, M. Kaliske, A thermo-mechanical finite element material model for the rubber forming and vulcanization process: from unvulcanized to vulcanized rubber. Int. J. Solids Struct. 185, 365–379 (2020)

    Article  Google Scholar 

  47. K. Upadhyay, G. Subhash, D. Spearot, Visco-hyperelastic constitutive modeling of strain rate sensitive soft materials. J. Mech. Phys. Solids 135, 103777 (2020)

    Article  MathSciNet  Google Scholar 

  48. C. Miller, T.C. Gasser, A microstructurally motivated constitutive description of collagenous soft biological tissue towards the description of their non-linear and time-dependent properties. J. Mech. Phys. Solids 154, 104500 (2021)

    Article  MathSciNet  Google Scholar 

  49. L. Herrmann, A numerical procedure for viscoelastic stress analysis, in Seventh Meeting of ICRPG Mechanical Behavior Working Group, Orlando, FL (1968)

  50. R.L. Taylor, K.S. Pister, G.L. Goudreau, Thermomechanical analysis of viscoelastic solids. Int. J. Numer. Methods Eng. 2(1), 45–59 (1970)

    Article  MATH  Google Scholar 

  51. W.W. Feng, A recurrence formula for viscoelastic constitutive equations. Int. J. Non-linear Mech. 27(4), 675–678 (1992)

    Article  ADS  MATH  Google Scholar 

  52. J. Sorvari, J. Hämäläinen, Time integration in linear viscoelasticity—a comparative study. Mech. Time-Dependent Mater. 14(3), 307–328 (2010)

    Article  ADS  Google Scholar 

  53. A.E. Green, J.E. Adkins, Large Elastic Deformations and Non-linear Continuum Mechanics (Clarendon Press, 1960). https://books.google.fr/books?id=caYNAQAAIAAJ

  54. R.S. Rivlin, Large elastic deformations of isotropic materials iv. Further developments of the general theory. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 241(835), 379–397 (1948)

    ADS  MathSciNet  MATH  Google Scholar 

  55. C. Truesdell, The mechanical foundations of elasticity and fluid dynamics. J. Ration. Mech. Anal. 1, 125–300 (1952)

    MathSciNet  MATH  Google Scholar 

  56. C.A. Truesdell, A program of physical research in classical mechanics. Z. Angew. Mate. Phys. 3(2), 79–95 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  57. R.W. Ogden, Non-linear Elastic Deformations (Courier Corporation, North Chelmsford, 1997)

    Google Scholar 

  58. F. Dai, K.R. Rajagopal, A.S. Wineman, Non-uniform extension of a non-linear viscoelastic slab. Int. J. Solids Struct. 29(7), 911–930 (1992)

    Article  MATH  Google Scholar 

  59. F. Dai, K. Rajagopal, Proportional shearing of a non-linear viscoelastic layer. Int. J. Non-linear Mech. 28(1), 57–68 (1993)

    Article  MATH  Google Scholar 

  60. S.B. Lee, A. Wineman, A model for nonlinear viscoelastic torsional response of an elastomeric bushing. Acta Mech. 135(3), 199–218 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  61. L. Filograna, M. Racioppi, G. Saccomandi, I. Sgura, A simple model of nonlinear viscoelasticity taking into account stress relaxation. Acta Mech. 204(1), 21–36 (2009)

    Article  MATH  Google Scholar 

  62. R. De Pascalis, W.J. Parnell, I.D. Abrahams, T. Shearer, D.M. Daly, D. Grundy, The inflation of viscoelastic balloons and hollow viscera. Proc. R. Soc. A 474(2218), 20180102 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  63. R. Bustamante, K. Rajagopal, O. Orellana, R. Meneses, Implicit constitutive relations for describing the response of visco-elastic bodies. Int. J. Non-Linear Mech. 126, 103526 (2020)

    Article  ADS  Google Scholar 

  64. R. Bustamante, K. Rajagopal, The circumferential shearing of a cylindrical annulus of viscoelastic solids described by implicit constitutive relations. Acta Mech. 232(7), 2679–2694 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  65. A. Farina, L. Fusi, F. Rosso, G. Saccomandi, Creep, recovery and vibration of an incompressible viscoelastic material of the rate type: simple tension case. Int. J. Non-Linear Mech. 138, 103851 (2022)

    Article  ADS  Google Scholar 

  66. A. Farina, L. Fusi, F. Rosso, G. Saccomandi, Vibration of an incompressible viscoelastic shell of rate type. Z. Angew. Math. Phys. 73(2), 1–14 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  67. R. Song, A. Muliana, K. Rajagopal, A thermodynamically consistent model for viscoelastic polymers undergoing microstructural changes. Int. J. Eng. Sci. 142, 106–124 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  68. E. Peña, J.A. Peña, M. Doblaré, On modelling nonlinear viscoelastic effects in ligaments. J. Biomech. 41, 2659–2666 (2008)

    Article  Google Scholar 

  69. M. Kaliske, H. Rothert, Formulation and implementation of three-dimensional viscoelasticity at small and finite strains. Comput. Mech. 19(3), 228–239 (1997)

    Article  MATH  Google Scholar 

  70. J.E. Marsden, T.J.R. Hughes, Mathematical Foundations of Elasticity. Dover Civil and Mechanical Engineering Series. (Dover, 1994). https://books.google.fr/books?id=RjzhDL5rLSoC

  71. E. Stein, G. Sagar, Convergence behavior of 3d finite elements for Neo-Hookean material. Eng. Comput. 25(3), 220–232 (2008)

    Article  MATH  Google Scholar 

  72. D. Hibbit, B. Karlsson, P. Sorensen, Abaqus User Subroutine Reference Manual, vol. 6. (Rhode Island, 2007)

  73. M.M. Carroll, Controllable deformations of incompressible simple materials. Int. J. Eng. Sci. 5(6), 515–525 (1967)

    Article  Google Scholar 

  74. J.L. Ericksen, Deformations possible in every compressible, isotropic, perfectly elastic material. Stud. Appl. Math. 34(1–4), 126–128 (1955)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is part of the ENIT/ECL/ArianeGroup Project that is financially supported by ArianeGroup. We thank sincerely all the associated partners for the realization of this work, in particular Bernard Troclet and Stephane Muller from ArianeGroup.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adel Tayeb.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tayeb, A., Arfaoui, M., Zine, A. et al. Investigation of the nonlinear hyper-viscoelastic behavior of elastomers at finite strain: implementation and numerical validation. Eur. Phys. J. Plus 137, 536 (2022). https://doi.org/10.1140/epjp/s13360-022-02757-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02757-w

Navigation