Skip to main content
Log in

In-situ AFM Experiments with Discontinuous DIC Applied to Damage Identification in Biomaterials

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

Natural materials (e.g. nacre, bone, and spider silk) exhibit unique and outstanding mechanical properties. This performance is due to highly evolved hierarchical designs. Building a comprehensive understanding of the multi-scale mechanisms that enable this performance represents a critical step toward realizing strong and tough bio-inspired materials. This paper details a multi-scale experimental investigation into the toughening mechanisms in natural nacre. By applying extended digital image correlation and other image processing techniques, quantitative information is extracted from otherwise prodominantly qualitative experiments. In situ three point bending fracture tests are performed to identify and quantify the toughening mechanisms involved during the fracture of natural nacre across multiple length scales. At the macro and micro scales, fracture tests performed in situ with a macro lens and optical microscope enable observation of spreading of damage outward from the crack tip. This spreading is quantified using an iso-contour technique to assess material toughness. At the nanoscale, fracture tests are performed in situ an atomic force microscope to link the larger-scale damage spreading to sliding within the tablet-based microstructure. To quantify the magnitude of sliding and its distribution, images from the in situ AFM fracture tests are analyzed using new algorithms based on digital image correlation techniques which allow for discontinuous displacement fields. Ultimately, this comprehensive methodology provides a framework for broad experimental investigations into the failure mechanisms of bio- and bio-inspired materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Sarikaya M, Aksay IA (eds) (1995) Biomimetics, design and processing of materials. Woodbury, NY

  2. Mayer G (2005) Rigid biological systems as models for synthetic composites. Science 310:1144

    Article  Google Scholar 

  3. Buehler MJ, Ackbarow T (2007) Fracture mechanics of protein materials. Mater Today 10:46

    Article  Google Scholar 

  4. Ashby MF, Gibson LJ, Wegst U, Olive R (1995) The mechanical properties of natural materials. I. Material property charts. Proc Math Phys Sci 450:123

    Article  Google Scholar 

  5. Gao HJ, Ji BH, Jager IL, Arzt E, Fratzl P (2003) Materials become insensitive to flaws at nanoscale: lessons from nature. Proc Natl Acad Sci USA 100:5597

    Article  Google Scholar 

  6. Currey JD (1977) Mechanical properties of Mother of Pearl in tension. Proc R Soc Lond 196:443

    Article  Google Scholar 

  7. Currey JD, Taylor JD (1974) The mechanical behavior of some molluscan hard tissues. J Zool (London) 173:395

    Article  Google Scholar 

  8. Wegst U, Ashby M (2004) The mechanical efficiency of natural materials. Philos Mag 84:2167

    Article  Google Scholar 

  9. Barthelat F, Espinosa HD (2007) An experimental investigation of deformation and fracture of nacre-mother of pearl. Exp Mech 47:311

    Article  Google Scholar 

  10. Lin A, Meyers MA (2005) Growth and structure in abalone shell. Mater Sci Eng A-Struct Mater Prop Microstruct Process 390:27

    Google Scholar 

  11. Su XW et al (2002) Structural and microstructural characterization of the growth lines and prismatic microarchitecture in red abalone shell and the microstructures of abalone “flat pearls”. Chem Mater 14:3106

    Article  Google Scholar 

  12. Espinosa H, Rim J, Barthelat F, Buehler MJ (2009) Merger of structure and material in nacre and bone-perspectives on de novo biomimetic materials. Prog Mater Sci 54:1059

    Article  Google Scholar 

  13. Launey M, Ritchie R (2009) On the fracture toughness of advanced materials. Adv Mater 21:2103–2110

    Article  Google Scholar 

  14. Espinosa HD et al. (2011) Tablet-level origin of toughening in Abalone shells and translation to synthetic composite materials. Nature communications. doi:10.1038/ncomms1172

  15. Wang RZ, Suo Z, Evans AG, Yao N, Aksay IA (2001) Deformation mechanisms in nacre. J Mater Res 16:2485

    Article  Google Scholar 

  16. Ren F, Wan X, Ma Z, Su J (2009) Study on microstructure and thermodynamics of nacre in mussel shell. Mater Chem Phys 114:367

    Article  Google Scholar 

  17. Meyers M, Lin A, Chen P, Muyco J (2008) Mechanical strength of abalone nacre: role of the soft organic layer. J Mech Behav Biomed Mater 1:76

    Article  Google Scholar 

  18. Evans AG et al (2001) A model for the robust mechanical behavior of nacre. J Mater Res 16:2475

    Article  Google Scholar 

  19. Song F, Bai YL (2003) Effects of nanostructures on the fracture strength of the interfaces in nacre. J Mater Res 18:1741

    Article  Google Scholar 

  20. Smith BL et al (1999) Molecular mechanistic origin of the toughness of natural adhesives, fibres and composites. Nature (London) 399:761

    Article  Google Scholar 

  21. Barthelat F, Li CM, Comi C, Espinosa HD (2006) Mechanical properties of nacre constituents and their impact on mechanical performance. J Mater Res 21:1977

    Article  Google Scholar 

  22. Li XD, Huang Z (2009) Unveiling the formation mechanism of pseudo-single-crystal aragonite platelets in nacre. Phys Rev Lett 102:1

    Google Scholar 

  23. Bruet BJF et al (2005) Nanoscale morphology and indentation of individual nacre tablets from the gastropod mollusc Trochus niloticus. J Mater Res 20:2400

    Article  Google Scholar 

  24. Grégoire D, Maigre H, Morestin F (2009) New experimental techniques for dynamic crack localization. Eur J Comput Mech 18:255

    Google Scholar 

  25. Clegg WJ, Kendall K, Alford NM, Button TW, Birchall JD (1990) A simple way to make tough ceramics. Nature 347:455

    Article  Google Scholar 

  26. Mayer G (2006) New classes of tough composite materials: lessons from natural rigid biological systems. Mater Sci Eng C Biomim Supramolec Syst 26:1261

    Google Scholar 

  27. Tang ZY, Kotov NA, Magonov S, Ozturk B (2003) Nanostructured artificial nacre. Nat Mater 2:413

    Article  Google Scholar 

  28. Podsiadlo P et al (2007) Ultrastrong and stiff layered polymer nanocomposites. Science 318:80

    Article  Google Scholar 

  29. Bonderer LJ, Studart A, Gauckler L (2008) Bioinspired design and assembly of platelet reinforced polymer films. Science 319:1069

    Article  Google Scholar 

  30. Chen L, Ballarini R, Kahn H, Heuer AH (2007) A bioinspired micro-composite structure. J Mater Res 22:124

    Article  Google Scholar 

  31. Zhang X, Liu C, Wu W, Wang J (2006) Evaporation-induced self-assembly of organic–inorganic ordered nanocomposite thin films that mimic nacre. Mater Lett 60:2086

    Article  Google Scholar 

  32. Munch E et al (2008) Tough, bio-inspired hybrid materials. Science 322:1516

    Article  Google Scholar 

  33. A. S. T. M. Standard E1820-01 (2001) Standard test method for measurement of fracture toughness. ASTM International

  34. Barthelat F, Tang H, Zavattieri PD, Li CM, Espinosa HD (2007) On the mechanics of mother-of-pearl: a key feature in the material hierarchical structure. J Mech Phys Solids 55:306

    Article  Google Scholar 

  35. Sutton MA, Cheng MQ, Peters WH, Chao YJ, Mcneill SR (1986) Application of an optimized digital correlation method to planar deformation analysis. Image Vis Comput 4:143

    Article  Google Scholar 

  36. Sutton MA, Wolters W, Peters WH, Ranson W, Mcneill SR (1983) Determination of displacements using an improved digital correlation method. Image Vis Comput 1:133

    Article  Google Scholar 

  37. Touchal-Mguil S (1997) (In French) Une technique de corrélation d'images numériques: application à la détermination de courbes limites de formages et proposition d'un critère de striction. INSA-LYON, France

    Google Scholar 

  38. http://icasoft.insa-lyon.fr, Icasoft, Morestin in LaMCoS, INSA-Lyon.

  39. Moes N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46:131

    Article  MATH  Google Scholar 

  40. Gregoire D, Maigre H, Combescure A (2009) New experimental and numerical technique to study the arrest and the restart of a crack under impact in transparent materials. Int J Solids Struct 46:3480

    Article  Google Scholar 

  41. Poissant J, Barthelat F (2010) A novel “subset splitting” procedure for digital image correlation on discontinuous displacement fields. Exp Mech 50:353

    Article  Google Scholar 

  42. Réthoré J, Hild F, Roux S (2008) Extended digital image correlation with crack shape optimization. Int J Numer Methods Eng 73:248

    Article  MATH  Google Scholar 

  43. Grégoire D, Maigre H, Fabis J, Combescure A (to be submitted, 2010) New experimental techniques for crack location and fracture parameters estimation in non-transparent materials. Exp Mech

Download references

Acknowledgments

HDE acknowledges the support by the National Science Foundation through award No. CMS-0301416, ARO-MURI Award No. W911NF-08-1-0541, ONR awards N00014-08-1-0108, N00014-08-1-1055, and General Motors Company through contract No. TCS10643. Carla Shute (Northwestern University) is gratefully acknowledged for her advice concerning the nacre sample preparation. D.G. is grateful to the French Ministry of Defense (DGA/D4S) for its support through grant No. 0860021 to visit Northwestern University as a research associate. O.L. acknowledges the Northwestern University Presidential and Ryan Fellowships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. D. Espinosa.

Appendix A. Figures with Essential Color Discrimination

Appendix A. Figures with Essential Color Discrimination

Certain figures in this article, particularly Figs. 6 and 15 are difficult to interpret in black and white. The full color images can be found in the on-line version.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grégoire, D., Loh, O., Juster, A. et al. In-situ AFM Experiments with Discontinuous DIC Applied to Damage Identification in Biomaterials. Exp Mech 51, 591–607 (2011). https://doi.org/10.1007/s11340-011-9463-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-011-9463-6

Keywords

Navigation