Skip to main content
Log in

Experimental and Theoretical Assessment of Brittle Fracture in Engineering Components Containing a Sharp V-Notch

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

A criterion was proposed to predict brittle fracture in engineering components containing sharp V-shaped notches and subjected to mixed mode I/II loading. The criterion, called SV-MTS, was developed based on the maximum tangential stress (MTS) criterion proposed originally for analyzing crack problems. The curves which are obtained from the SV-MTS criterion could be used conveniently to predict the fracture resistance and also the notch bifurcation angle in sharp V-notched components under pure mode II and also mixed mode loading. To evaluate the validity of the proposed criterion, a set of fracture tests were conducted on a new test specimen, called sharp V-notched Brazilian disc (SV-BD), under mixed mode loading conditions. It is shown that the experimental results obtained from PMMA specimens are in very good agreement with the curves of SV-MTS criterion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

E :

Young’s modulus

K Ic :

Plane-strain fracture toughness

\( K_I^V \) :

Notch stress intensity factor-mode I

\( K_{II}^V \) :

Notch stress intensity factor-mode II

\( K_{Ic}^V \) :

Notch fracture toughness in pure mode I

\( M_{Crack}^e \) :

Crack mode mixity parameter

\( M_V^e \) :

Notch mode mixity parameter

r c,V :

Critical distance for sharp V-notch

α :

Notch opening angle

β :

Loading angle for Brazilian disc specimen

β II :

Loading angle corresponding to pure mode II loading

λ i :

Eigenvalues

ω :

Notch solid angle

ν :

Poisson’s ratio

σ rr :

Radial stress

\( {\sigma_{r\theta }} \) :

In-plane shear stress

σ u :

Ultimate tensile strength

\( {\sigma_{\theta \theta }} \) :

Tangential stress

\( {({\sigma_{\theta \theta }})_c} \) :

Critical value of \( {\sigma_{\theta \theta }} \)

θ 0 :

Notch bifurcation angle

θ 0I :

Notch bifurcation angle for pure mode I

θ 0II :

Notch bifurcation angle for pure mode II

References

  1. Carpinteri A (1987) Stress singularity and generalized fracture toughness at the re-entrant corners. Eng Fract Mech 26:143–155

    Article  Google Scholar 

  2. Knesl Z (1991) A criterion of V-notched stability. Int J Fract 48:79–83

    Article  Google Scholar 

  3. Nui LS, Chehimi C, Pluvinage G (1994) Stress field near a large blunted tip V-Notch and the application of the concept of the critical notch stress intensity factor (NSIF) to the fracture toughness of very brittle materials. Eng Fract Mech 49:325–335

    Article  Google Scholar 

  4. Dini D, Hills D (2004) Asymptotic characterization of nearly sharp notch root stress fields. Int J Fract 130:651–666

    Article  MATH  Google Scholar 

  5. Taylor D (2004) Predicting the fracture strength of ceramic materials using the theory of critical distances. Eng Fract Mech 71:2407–2416

    Article  Google Scholar 

  6. Seweryn A (1994) Brittle fracture criterion for structures with sharp notches. Eng Fract Mech 47:673–681

    Article  Google Scholar 

  7. Dunn ML, Suwito W, Cunningham S (1997) Stress intensities at notch singularities. Eng Fract Mech 57:417–430

    Article  Google Scholar 

  8. Lazzarin P, Zmabardi R (2001) A finite-volume-energy based approach to predict the static and fatigue behavior of components with sharp V-shaped notches. Int J Fract 112:275–298

    Article  Google Scholar 

  9. Gómez FJ, Elices M (2003) A fracture criterion for sharp V-notched samples. Int J Fract 123:163–175

    Article  Google Scholar 

  10. Gómez FJ, Elices M (2003) Fracture of components with V-shaped notches. Eng Fract Mech 70:1913–1927

    Article  Google Scholar 

  11. Livieri P (2003) A new path independent integral applied to notched components under mode I loadings. Int J Fract 123:107–125

    Article  Google Scholar 

  12. Leguillon D, Yosibash Z (2003) Crack onset at a V-notch. Influence of the notch tip radius. Int J Fract 122:1–21

    Article  Google Scholar 

  13. Yosibash Z, Bussiba A, Gilad I (2004) Failure criteria for brittle elastic materials. Int J Fract 125:307–333

    Article  MATH  Google Scholar 

  14. Ayatollahi MR, Torabi AR (2010) Brittle fracture in rounded-tip V-shaped notches. Mater Des 31:60–67

    Article  Google Scholar 

  15. Dunn ML, Suwito W, Cunningham S, May C (1997) Fracture initiation at sharp notches under mode I, mode II, and mild mixed mode loading. Int J Fract 84:367–381

    Article  Google Scholar 

  16. Seweryn A, Mroz Z (1995) A non-local stress failure condition for structural elements under multiaxial loading. Eng Fract Mech 51:955–973

    Article  Google Scholar 

  17. Seweryn A, Lukaszewicz A (2002) Verification of brittle fracture criteria for elements with V-shaped notches. Eng Fract Mech 69:1487–1510

    Article  Google Scholar 

  18. Yosibash Z, Priel E, Leguillon D (2006) A failure criterion for brittle elastic materials under mixed mode loading. Int J Fract 141:291–312

    Article  MATH  Google Scholar 

  19. Priel E, Bussiba A, Gilad A, Yosibash Z (2007) Mixed mode failure criteria for brittle elastic V-notched structures. Int J Fract 144:247–265

    Article  MATH  Google Scholar 

  20. Suwito W, Dunn ML (1998) Fracture initiation at sharp notches in single crystal silicon. J Appl Phys 83:3574–3582

    Article  Google Scholar 

  21. Hutchinson JW, Suo Z (1992) Advances in experimental mechanics, vol 29. Academic, San Diego, pp 64–187

    Google Scholar 

  22. Erdogan F, Sih G (1963) On the crack extension in plates under plane loading and transverse shear. J Basic Engng Trans ASME 85:519–525

    Google Scholar 

  23. Ayatollahi MR, Torabi AR (2009) A criterion for brittle fracture in U-notched components under mixed mode loading. Eng Fract Mech 76:1883–1896

    Article  Google Scholar 

  24. Ayatollahi MR, Torabi AR (2010) Determination of mode II fracture toughness for U-shaped notches using Brazilian disc specimen. Int J Solids Struct 47:454–465

    Article  MATH  Google Scholar 

  25. Williams ML (1952) Stress singularities resulting from various boundary conditions in angular corners of plates in extension. J Appl Mech 19:526–528

    Google Scholar 

  26. Carpinteri A, Cornetti P, Pugno N, Sapora A, Taylor D (2008) A finite fracture mechanics approach to structures with sharp V-notches. Eng Fract Mech 75:1736–1752

    Article  Google Scholar 

  27. Susmel L, Taylor D (2008) The theory of critical distances to predict static strength of notched brittle components subjected to mixed mode loading. Eng Fract Mech 75:534–550

    Article  Google Scholar 

  28. Taylor D (2008) The theory of critical distances. Eng Fract Mech 75:1696–1705

    Article  Google Scholar 

  29. Strandberg M (2002) Fracture at V-notches with contained plasticity. Eng Fract Mech 69:403–415

    Article  Google Scholar 

  30. Gomez FJ, Elices M (2004) A fracture criterion for blunted V-notched samples. Int J Fract 127:239–264

    Article  MATH  Google Scholar 

  31. Gomez FJ, Elices M, Berto F, Lazzarin P (2007) Local strain energy to assess the static failure of U-notches in plates under mixed mode loading. Int J Fract 145:29–45

    Article  MATH  Google Scholar 

  32. Gomez FJ, Guinea GV, Elices M (2006) Failure criteria for linear elastic materials with U-notches. Int J Fract 141:95–109

    Article  Google Scholar 

  33. Smith DJ, Ayatollahi MR, Pavier MJ (2001) The role of T-stress in brittle fracture for linear elastic materials under mixed-mode loading. Fatigue Fract Eng Mater Struct 24:137–150

    Article  Google Scholar 

  34. Ayatollahi MR, Aliha MRM (2008) On the use of Brazilian disc specimen for calculating mixed mode I–II fracture toughness of rock materials. Eng Fract Mech 75:4631–4641

    Article  Google Scholar 

  35. Awaji H, Sato S (1978) Combined mode fracture toughness measurement by the disc test. J Eng Mater Tech 100:172–175

    Article  Google Scholar 

  36. Annual Book of ASTM Standards (2000) ASTM D638-99 Standard test method for tensile properties of plastics. West Conshohocken, United States

    Google Scholar 

  37. Annual Book of ASTM Standards (2004) ASTM E132-04 Standard test method for Poisson’s ratio at room temperature. West Conshohocken, United States

    Google Scholar 

  38. Annual Book of ASTM Standards (1999) ASTM D5045-99 Standard test method for plane-strain fracture toughness and strain energy release rate of plastic materials. West Conshohocken, United States

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.R. Ayatollahi.

Appendix

Appendix

The functions f if (θ) and g if (θ) used in the stress distribution around a sharp V-notch [18]:

$$ \left\{ {\begin{array}{*{20}{c}} {{f_{rr}}(\theta )} \\{{f_{\theta \theta }}(\theta )} \\{{f_{r\theta }}(\theta )} \\\end{array} } \right\} = \left[ {\begin{array}{*{20}{c}} {{{{\left\{ {\cos (m\theta ) + \frac{{(2 + n)}}{n}\frac{{\sin ({{{\omega \,m}} \left/ {2} \right.})}}{{\sin ({{{\omega \,n}} \left/ {2} \right.})}}\cos (n\theta )} \right\}}} \left/ {{\sigma_{\theta \theta }^I(\theta = 0)}} \right.}} \hfill \\{{{{\left\{ { - \cos (m\theta ) + \frac{m}{n}\frac{{\sin ({{{\omega \,m}} \left/ {2} \right.})}}{{\sin ({{{\omega \,n}} \left/ {2} \right.})}}\cos (n\theta )} \right\}}} \left/ {{\sigma_{\theta \theta }^I(\theta = 0)}} \right.}} \hfill \\{{{{\left\{ { - \sin (m\theta ) + \frac{{\sin ({{{\omega \,m}} \left/ {2} \right.})}}{{\sin ({{{\omega \,n}} \left/ {2} \right.})}}\sin (n\theta )} \right\}}} \left/ {{\sigma_{\theta \theta }^I(\theta = 0)}} \right.}} \hfill \\\end{array} } \right] $$
(A1)
$$ \left\{ {\begin{array}{*{20}{c}} {{g_{rr}}(\theta )} \\{{g_{\theta \theta }}(\theta )} \\{{g_{r\theta }}(\theta )} \\\end{array} } \right\} = \left[ {\begin{array}{*{20}{c}} {\left\{ {\sin (p\theta ) + \frac{{(2 + q)}}{p}\frac{{\sin ({{{\omega \,p}} \left/ {2} \right.})}}{{\sin ({{{\omega \,q}} \left/ {2} \right.})}}\sin (q\theta )} \right\}/\sigma_{r\theta }^{II}(\theta = 0)} \hfill \\{\left\{ { - \sin (p\theta ) + \frac{{\sin ({{{\omega \,p}} \left/ {2} \right.})}}{{\sin ({{{\omega \,q}} \left/ {2} \right.})}}\sin (q\theta )} \right\}/\sigma_{r\theta }^{II}(\theta = 0)} \hfill \\{\left\{ {\cos (p\theta ) - \frac{q}{p}\frac{{\sin ({{{\omega \,p}} \left/ {2} \right.})}}{{\sin ({{{\omega \,q}} \left/ {2} \right.})}}\cos (q\theta )} \right\}/\sigma_{r\theta }^{II}(\theta = 0)} \hfill \\\end{array} } \right] $$
(A2)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ayatollahi, M., Torabi, A. & Azizi, P. Experimental and Theoretical Assessment of Brittle Fracture in Engineering Components Containing a Sharp V-Notch. Exp Mech 51, 919–932 (2011). https://doi.org/10.1007/s11340-010-9401-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-010-9401-z

Keywords

Navigation