Advertisement

Experimental Mechanics

, Volume 50, Issue 1, pp 99–110 | Cite as

Digital Image Correlation Study of Plastic Deformation and Fracture in Fully Martensitic Steels

  • V. SavicEmail author
  • L. G. Hector Jr
  • J. R. Fekete
Article

Abstract

Plastic deformation and fracture of two grades of fully martensitic steel are investigated with a miniature tensile stage, a custom image acquisition algorithm and digital image correlation. The image acquisition algorithm controls the camera framing rate according to user defined load, displacement and timing thresholds. This provides a greater number of images captured during periods of rapid load change over small displacements. True stress–true strain curves reveal substantial differences in material ductility and failure behavior. Fracture surfaces are examined using scanning electron microscopy and energy dispersive spectroscopy to provide insight into differences in the tensile behaviors observed for these steels.

Keywords

Fully martensitic steels Mechanical properties Fracture High speed digital camera Digital image correlation 

Notes

Acknowledgements

The authors wish to thank J. Shotts for invaluable help with DASYLab programming, W Tong for many illuminating discussions on DIC analysis, and Y. Myasnikova for expert assistance with the SEM and EDS analyses.

References

  1. 1.
    Horvath CD, Fekete JR (2004) Opportunities and challenges for increased usage of advanced high strength steels in automotive applications. International Conference on Advanced High Strength Sheet Steels for Automotive Applications Proceedings, Association for Iron & Steel Technology, June, pp 3–10Google Scholar
  2. 2.
    Cornette D, Hourman T, Hudin O, Laurent JP, Reynaert A (2001) High strength steels for automotive safety parts. Society of Automotive Engineers 2001-01-0078, Warrendale.Google Scholar
  3. 3.
    Zrník J, Manuzíc I, Dobatkin SV (2006) Recent progress in high strength low carbon steels. Metallurgija 45:323–331.Google Scholar
  4. 4.
    Pérez R, Benito JA, Prado JM (2005) Study of the inelastic response of TRIP steels after plastic deformation. ISIJ Int 45:1925–1933. doi: 10.2355/isijinternational.45.1925.CrossRefGoogle Scholar
  5. 5.
    Jacques PJ, Girault E, Mertens A, Verlinden B, van Humbeek J, Delannay F (2001) The development of cold rolled TRIP-assisted multiphase steels. ISIJ Int 41:1068–1074. doi: 10.2355/isijinternational.41.1068.CrossRefGoogle Scholar
  6. 6.
    Chen L, Kim HS, Kim SK, De Cooman BC (2007) Localized deformation due to Portevin LeChatelier effect in 18Mn–0.6C TWIP austenitic steel. ISIJ Int 47:1804–1812. doi: 10.2355/isijinternational.47.1804.CrossRefGoogle Scholar
  7. 7.
    Frommeyer G, Brux U, Neumann P (2003) Supra-ductile and high strength manganese-TRIP/TWIP steels development. ISIJ Int 43:438–446. doi: 10.2355/isijinternational.43.438.CrossRefGoogle Scholar
  8. 8.
    Grässel O, Krüger L, Frommeyer G, Meyer LW (2000) High strength Fe–Mn–(Al,Si) TRIP/TWIP steels development—properties-application. Int J Plast 16:1391–1409. doi: 10.1016/S0749-6419(00)00015-2.zbMATHCrossRefGoogle Scholar
  9. 9.
    Jiang Z, Guan Z, Lian J (1995) Effects of microstructural variables on the deformation behaviour of dual-phase steel. Mater Sci Eng A 190:55–64. doi: 10.1016/0921-5093(94)09594-M.CrossRefGoogle Scholar
  10. 10.
    Jeong BY, Gauvin R, Yue S (2002) EBSD study of martensite in a dual phase steel. Microsc Microanal 8:700–701.Google Scholar
  11. 11.
    Sarwar M, Priestner R (1996) Influence of ferrite-martensite microstructural morphology on tensile properties of dual-phase steel. J Mater Sci 31:2091–2095. doi: 10.1007/BF00356631.CrossRefGoogle Scholar
  12. 12.
    Tong W, Tao H, Jiang X, Zhang N, Marya M, Hector LG Jr, Gayden XQ (2005) Deformation and fracture of miniature tensile bars with resistance spot weld microstructures: an application of digital image correlation to dual-phase steels. Met Mat Trans A 36:2651–2669. doi: 10.1007/s11661-005-0263-4.CrossRefGoogle Scholar
  13. 13.
    Marya M, Wang K, Hector LG Jr, Gayden XQ (2006) Tensile-shear forces and fracture modes in single and multiple weld specimens in dual-phase steels. ASME J Manuf Sci Eng 128:287–298. doi: 10.1115/1.2137751.CrossRefGoogle Scholar
  14. 14.
    Long X, Khanna SK (2007) Fatigue properties and failure characterization of spot welded high strength steel sheet. Int J Fatigue 29:879–886. doi: 10.1016/j.ijfatigue.2006.08.003.CrossRefGoogle Scholar
  15. 15.
    Leslie WC (1981) The physical metallurgy of steels. Tech Books, Marietta.Google Scholar
  16. 16.
    Krauss G (2005) Steels: processing, structure and performance. ASM International, Materials Park.Google Scholar
  17. 17.
    Alexander WO, Davies GJ, Reynolds KA, Bradbury EJ (1985) Essential metallurgy for engineers. Van Nostrand Reinhold, United Kingdom.Google Scholar
  18. 18.
    Cafolla J, Hall RW, Norman DP, McGregor IJ (2003) Forming to crash simulation in full vehicle models. Proc. 4th European LS-DYNA Users Conference DYNAmore GmbH pp. E-11-17–E-11-26Google Scholar
  19. 19.
    Cornette D, Hourman T, Hudin O, Laurent JP, Reynaert A (2001) High strength steels for automotive safety parts. Society of Automotive Engineers 2001-01-0078, Warrendale.Google Scholar
  20. 20.
    Simunovic S, Shaw J, Aramayo G (2001) Steel processing effects on impact deformation of ultralight steel autobody. Society of Automotive Engineers 2001-01-1056, Warrendale.Google Scholar
  21. 21.
    Zeng D, Liu SD, Makam V, Shetty S, Zhang L, Zweng F (2002) Specifying steel properties and incorporating forming effects in full vehicle impact simulation. Society of Automotive Engineers 2002-01-0639, Warrendale.Google Scholar
  22. 22.
    Sriram S, Yan B, Huang M (2004) Characterization of press formability of advanced high-strength steels using laboratory tests. Society of Automotive Engineers 2004-01-0506, Warrendale.Google Scholar
  23. 23.
    Yan B, Kantner C, Zhu H, Nadkarni G, Horvath C (2005) Evaluation of crush performance of a hat section component using dual-phase and martensitic steels. Society of Automotive Engineers 2005-01-0837, Warrendale.Google Scholar
  24. 24.
    Savic V, Hector L Jr (2007) Tensile deformation and fracture of press hardened boron steel using digital image correlation. Society of Automotive Engineers 2007-01-0790, Warrendale, PA.Google Scholar
  25. 25.
    Tarigopula V, Hopperstand OS, Langseth M, Clausen AH, Hild F, Lademo OG, Eriksson M (2008) A study of large plastic deformations in dual phase steel using digital image correlation and FE analysis. Exp Mech 48:181–196. doi: 10.1007/s11340-007-9066-4.CrossRefGoogle Scholar
  26. 26.
    Mohr D, Oswald M (2008) A new experimental technique for the multi-axial testing of advanced high strength steel sheets. Exp Mechanics 48:65–77. doi: 10.1007/s11340-007-9053-9.CrossRefGoogle Scholar
  27. 27.
    Kang J, Ososkov Y, Embury JD, Wilkinson DS (2007) Digital image correlation studies for microscopic strain distribution and damage in dual phase steels. Scr Mater 56:999–1002. doi: 10.1016/j.scriptamat.2007.01.031.CrossRefGoogle Scholar
  28. 28.
    Hodge JM, Orehoski MA (1946) Relationship between hardenability and percentage of martensite in some low-alloy steels. Trans AIME 167:627–642.Google Scholar
  29. 29.
    Chait R (1972) Factors influencing the strength differential of high strength steels. Metall Mater Trans B 3:369–375.Google Scholar
  30. 30.
    Tong W (2004) A user’s guide to the Yale surface deformation mapping program (SDMAP), Technical Report. Department of Mechanical Engineering, Yale University, New Haven.Google Scholar
  31. 31.
    Smith BW, Li X, Tong W (1998) Error assessment for strain mapping by digital image correlation. Exp Tech 22:19–21. doi: 10.1111/j.1747-1567.1998.tb02332.x.CrossRefGoogle Scholar
  32. 32.
    Tong W, Li X (1999) Evaluation of two plastic strain mapping methods. Proc. of SEM Annual Conference on Theoretical, Experimental and Computational Mechanics, June, pp 23–26Google Scholar
  33. 33.
    Tong W (2005) An evaluation of digital image correlation criteria for strain mapping applications. Strain 41:167–175. doi: 10.1111/j.1475-1305.2005.00227.x.CrossRefGoogle Scholar
  34. 34.
    Sutton MA, McNeill SR, Jang J, Babai M (1988) Effect of subpixel image restoration on digital correlation error estimates. Opt Eng 27:870–877.Google Scholar
  35. 35.
    Bruck HA, McNeill SR, Sutton MA, Peters WH (1989) Digital image correlation using Newton–Raphson method of partial differential corrections. Exp Mech 29:261–267. doi: 10.1007/BF02321405.CrossRefGoogle Scholar
  36. 36.
    Vendroux G, Knauss WG (1998) Submicron deformation field measurements, Part 2. Improved digital image correlation. Exp Mech 38:86–91. doi: 10.1007/BF02321649.CrossRefGoogle Scholar
  37. 37.
    Hong T, Tong W, Zhang N, Hector LG (2005) Time-resolved strain measurements of Portevin–LeChatelier bands in aluminum using a high speed digital camera. Scr Mater 53:87–92. doi: 10.1016/j.scriptamat.2005.03.020.CrossRefGoogle Scholar
  38. 38.
    Hector LG Jr, Lai YH, Tong W, Lukitsch M (2007) Strain accumulation in hydrogen fuel cell membranes during a single hydration/dehydration cycle. ASME J Fuel Cell Sci Technol 4:19–28. doi: 10.1115/1.2393302.CrossRefGoogle Scholar
  39. 39.
    Tong W, Zhang N (2001) An experimental investigation of necking in thin sheets. Proceedings of the ASME manufacturing Engineering Division MED, 12:231–238Google Scholar

Copyright information

© Society for Experimental Mechanics 2008

Authors and Affiliations

  1. 1.General Motors CorporationWarrenUSA

Personalised recommendations