Skip to main content

Advertisement

Log in

A Finite Mixture of Nonlinear Random Coefficient Models for Continuous Repeated Measures Data

  • Published:
Psychometrika Aims and scope Submit manuscript

Abstract

Nonlinear random coefficient models (NRCMs) for continuous longitudinal data are often used for examining individual behaviors that display nonlinear patterns of development (or growth) over time in measured variables. As an extension of this model, this study considers the finite mixture of NRCMs that combine features of NRCMs with the idea of finite mixture (or latent class) models. The efficacy of this model is that it allows the integration of intrinsically nonlinear functions where the data come from a mixture of two or more unobserved subpopulations, thus allowing the simultaneous investigation of intra-individual (within-person) variability, inter-individual (between-person) variability, and subpopulation heterogeneity. Effectiveness of this model to work under real data analytic conditions was examined by executing a Monte Carlo simulation study. The simulation study was carried out using an R routine specifically developed for the purpose of this study. The R routine used maximum likelihood with the expectation–maximization algorithm. The design of the study mimicked the output obtained from running a two-class mixture model on task completion data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. The data were obtained from Robert Cudeck who acquired them from Scott Chaiken of the Armstrong Laboratory, Brooks Air Force Base. A more detailed explanation of the origins of the data can be found in Cudeck (1996).

  2. \(\hbox {MD}=\Delta =\sqrt{( {\varvec{\upalpha } }_1 -{\varvec{\upalpha } }_2 {)}'{\varvec{\Phi } }^{-1}({\varvec{\upalpha } }_1 -{\varvec{\upalpha } }_2 )},\) where \({\varvec{\upalpha } }_1 \) and \({\varvec{\upalpha } }_2 \) denote the mean vector of fixed / population effects or class 1 and class 2, respectively, and \({\varvec{\Phi } }\) denotes the variance—covariance matrix of random effects.

  3. Results from a preliminary simulation study in which MD values were much small (i.e., less distributional separation) can be found at http://www.cehd.umn.edu/edpsych/people/Faculty/Kohli.html. These results showed poor convergence to a proper solution and large bias of model parameters—particularly the variance–covariance components of the linear–linear NRMM.

  4. We ran a separate simulation study where we empirically generated the starting values. The results from that study can be found on the following webpage: http://www.cehd.umn.edu/edpsych/people/Faculty/Kohli.html

References

  • Aitkin, M., & Rubin, D. B. (1985). Estimation and hypothesis testing in finite mixture models. Journal of the Royal Statistical Society Series D (Methodological), 47, 67–75.

    Google Scholar 

  • Arminger, G., Stein, P., & Wittenberg, J. (1999). Mixtures of conditional mean and covariance structure models. Psychometrika, 64, 475–494.

    Article  Google Scholar 

  • Blozis, S. A. (2004). Structured latent curve models for the study of change in multivariate repeated measures data. Psychological Methods, 9, 334–353.

    Article  PubMed  Google Scholar 

  • Blozis, S. A., & Cudeck, R. (1999). Linear mixed-effects models with latent variable covariates. Journal of Educational and Behavioral Statistics, 24, 245–270.

    Article  Google Scholar 

  • Boos, D., & Brownie, C. (1991). Mixture models for continuous data in dose-response studies when some animals are unaffected by treatment. Biometrics, 47, 1489–1504.

    Article  PubMed  Google Scholar 

  • Codd, C. L., & Cudeck, R. (2014). Nonlinear random-effects mixture models for repeated measures. Psychometrika, 79, 60–83.

    Article  PubMed  Google Scholar 

  • Crowder, M., & Hand, D. (1990). Analysis of repeated measures. London: Chapman and Hall.

    Google Scholar 

  • Cudeck, R. (1996). Mixed-effects models in the study of individual differences with repeated measures data. Multivariate Behavioral Research, 31, 371–403.

    Article  PubMed  Google Scholar 

  • Cudeck, R., & du Toit, S. H. C. (2002). A nonlinear form of quadratic regression with interpretable parameters. Multivariate Behavioral Research, 37, 501–519.

    Article  PubMed  Google Scholar 

  • Cudeck, R., & Harring, J. R. (2007). The analysis of nonlinear patterns of change with random coefficient models. Annual Review of Psychology, 58, 615–637.

    Article  PubMed  Google Scholar 

  • Cudeck, R., & Harring, J. R. (2010). Developing a random coefficient model for nonlinear repeated measures data. In S.-M. Chow, E. Ferrer, & F. Hsieh (Eds.), Statistical methods for modeling human dynamics: An interdisciplinary dialogue. New York: Routledge.

    Google Scholar 

  • Cudeck, R., & Klebe, K. J. (2002). Multiphase mixed-effects models for repeated measures data. Psychological Methods, 7, 41–63.

    Article  PubMed  Google Scholar 

  • Davidian, M., & Giltinan, D. M. (1995). Nonlinear models for repeated measurement data. London: Chapman & Hall.

    Google Scholar 

  • du Toit, S. H. C., & Cudeck, R. (2009). Estimation of the nonlinear random coefficient model when some random effects are separable. Psychometrika, 74, 65–82.

    Article  Google Scholar 

  • Everitt, B. S., & Hand, D. J. (1981). Finite mixture distributions. London: Chapman & Hall.

    Book  Google Scholar 

  • Fitzmaurice, G. M., Laird, N. M., & Ware, J. H. (2011). Applied longitudinal analysis (2nd ed.). New York: Wiley.

    Google Scholar 

  • Frühwirth-Schnatter, S. (2006). Finite mixture and Markov switching models. New York: Springer.

    Google Scholar 

  • Grimm, K. J., & Ram, N. (2009). Nonlinear growth models in M plus and SAS. Structural Equation Modeling: A Multidisciplinary Journal, 16, 676–701.

    Article  Google Scholar 

  • Gruen, B., & Leisch, F. (2007). Fitting finite mixtures of generalized linear regressions in R. Computational Statistics & Data Analysis, 51, 5247–5252.

    Article  Google Scholar 

  • Hall, D. B., & Wang, L. (2005). Two-component mixtures of generalized linear mixed effects models for cluster correlated data. Statistical Modelling, 5, 21–37.

    Article  Google Scholar 

  • Hancock, G. R., & Samuelsen, K. M. (Eds.). (2008). Advances in latent variable mixture models. Charlotte, NC: Information Age Publishing Inc.

    Google Scholar 

  • Harring, J. R. (2009). A nonlinear mixed effects model for latent variables. Journal of Educational and Behavioral Statistics, 34, 293–318.

    Article  Google Scholar 

  • Harring, J. R. (2012). Finite mixtures of nonlinear mixed effects models. In J. R. Harring & G. R. Hancock (Eds.), Advances in longitudinal methods in the social and behavioral sciences (pp. 159–192). Charlotte, NC: Information Age Publishing Inc.

    Google Scholar 

  • Harring, J. R., Cudeck, R., & du Toit, S. H. C. (2006). Fitting partially nonlinear random coefficient models as SEMs. Multivariate Behavioral Research, 41, 579–596.

    Article  PubMed  Google Scholar 

  • Hartford, A., & Davidian, M. (2000). Consequences of misspecifying assumptions in nonlinear mixed effects models. Computational Statistics & Data Analysis, 34, 139–164.

    Article  Google Scholar 

  • Harwell, M. R. (1997). Analyzing the results of Monte Carlo studies in item response theory. Educational and Psychological Measurement, 57, 266–278.

    Article  Google Scholar 

  • Harwell, M. R., Stone, C. A., Hsu, T., & Kirisci, L. (1996). Monte Carlo studies in item response theory. Applied Psychological Measurement, 20, 101–125.

    Article  Google Scholar 

  • Hipp, J. R., & Bauer, D. J. (2006). Local solutions in the estimation of growth mixture models. Psychological Methods, 11, 36–53.

    Article  PubMed  Google Scholar 

  • Jennrich, R. I., & Schluchter, M. D. (1986). Unbalanced repeated measures models with structured covariance matrices. Biometrics, 42, 805–820.

    Article  PubMed  Google Scholar 

  • Kohli, N., & Harring, J. R. (2013). Modeling growth in latent variables using a piecewise function. Multivariate Behavioral Research, 48, 370–397.

    Article  PubMed  Google Scholar 

  • Kohli, N., Harring, J. R., & Hancock, G. R. (2013). Piecewise linear–linear latent growth mixture models with unknown knots. Educational and Psychological Measurement, 73, 935–955.

    Article  Google Scholar 

  • Laird, N. M., & Ware, J. H. (1982). Random-effects models for longitudinal data. Biometrics, 38, 963–974.

    Article  PubMed  Google Scholar 

  • Liu, M., & Hancock, G. R. (2014). Unrestricted mixture models for class identification in growth mixture modeling. Educational and Psychological Measurement, 74, 557–584.

    Article  Google Scholar 

  • Luo, X., Boos, D. D., & Tamura, R. N. (2004). Score tests for dose effect in the presence of non-responders. Statistics in Medicine, 23, 3581–3591.

    Article  PubMed  Google Scholar 

  • McLachlan, G., & Peel, D. (2000). Finite mixture models. New York: Wiley.

    Book  Google Scholar 

  • Muthén, B. O. (2001). Latent variable mixture modeling. In G. A. Marcoulides & R. E. Schumacker (Eds.), New developments and techniques in structural equation modeling (pp. 1–33). Mahwah, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Muthén, B. O. (2002). Beyond SEM: General latent variable modeling. Behaviormetrika, 29, 81–117.

    Article  Google Scholar 

  • Muthén, B. O. (2004). Latent variable analysis: Growth mixture modeling and related techniques. In D. Kaplan (Ed.), Handbook of quantitative methodology for the social sciences (pp. 345–368). Newbury Park, CA: Sage.

    Google Scholar 

  • Muthén, B. O., & Shedden, K. (1999). Finite mixture modeling with mixture outcomes using the EM algorithm. Biometrics, 55, 463–469.

    Article  PubMed  Google Scholar 

  • Nagin, D. S. (2005). Group-based modeling of development. Cambridge, MA: Harvard University Press.

    Book  Google Scholar 

  • Nylund, K. L., Asparouhov, T., & Muthén, B. (2007). Deciding on the number of classes in latent class analysis and growth mixture modeling: A Monte Carlo simulation study. Structural Equation Modeling: A Multidisciplinary Journal, 14, 535–569.

    Article  Google Scholar 

  • Pavlic, M., Brand, R. J., & Cumming, S. R. (2001). Estimating probability of nonresponse to treatment using mixture distributions. Statistics in Medicine, 20, 1739–1753.

    Article  PubMed  Google Scholar 

  • Pinheiro, J. C., & Bates, D. M. (2000). Mixed-effects models in S and S-PLUS. New York: Springer-Verlag.

    Book  Google Scholar 

  • Raudenbush, S. W., & Bryk, A. S. (2002). Hierarchical linear models (2nd ed.). Thousand Oaks: Sage Publications.

    Google Scholar 

  • R Core Team (2013). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.

  • Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6, 461–464.

    Article  Google Scholar 

  • Seber, G. A. F., & Wild, C. J. (1989). Nonlinear regression. New York: Wiley.

    Book  Google Scholar 

  • Singer, J. D., & Willett, J. B. (2003). Applied longitudinal data analysis: Modeling change and event occurrence. New York: Oxford University Press.

    Book  Google Scholar 

  • Smith, J. L., & Klebe, K. J. (1997, June). Design issues in learning experiments: A comparison between repeated measures ANOVA and a latent growth curve. Paper presented at the Annual Meeting of the Psychometric Society, Gatlinburg, TN.

  • Sokal, R. R., & Rohlf, F. J. (1995). Biometry: The principles and practice of statistics in biological research (3rd ed.). New York: W.H. Freeman.

    Google Scholar 

  • Titterington, D., Smith, A., & Makov, U. (1985). Statistical analysis of finite mixture distributions. Chichester: Wiley.

    Google Scholar 

  • Tueller, S. J., Drotar, S., & Lubke, G. H. (2011). Addressing the problem of switched class labels in latent variable mixture model simulation studies. Structural Equation Modeling, 18, 110–131.

    Article  Google Scholar 

  • Verbeke, G., & Lesaffre, E. (1996). A linear mixed-effects model with heterogeneity in the random effects population. Journal of the American Statistical Association, 91, 217–221.

    Article  Google Scholar 

  • Verbeke, G., & Molenberghs, G. (2000). Linear mixed models for longitudinal data. New York, NY: Springer-Verlag.

    Google Scholar 

  • Vonesh, E. F. (2012). Generalized linear and nonlinear models for correlated data: Theory and applications using SAS. Cary, NC: SAS Institute.

    Google Scholar 

  • Vonesh, E. F., & Carter, R. L. (1992). Mixed effects nonlinear regression for unbalanced repeated measures. Biometrics, 48, 1–17.

    Article  PubMed  Google Scholar 

  • Wang, L., & McArdle, J. J. (2008). A Simulation study comparison of bayesian estimation with conventional methods for estimating unknown change points. Structural Equation Modeling: A Multidisciplinary Journal, 15, 52–74.

    Article  Google Scholar 

  • Wedel, M., & DeSarbo, W. S. (1995). A mixture likelihood approach for generalized linear models. Journal of Classification, 12, 21–55.

    Article  Google Scholar 

  • Xu, W., & Hedeker, D. (2001). A random-effects mixture model for classifying treatment response in longitudinal clinical trials. Journal of Biopharmaceutical Statistics, 11, 253–273.

    Article  PubMed  Google Scholar 

  • Zopluoglu, C., Harring, J. R., & Kohli, N. (2014). FitPMM: An R routine to fit finite mixtures of piecewise mixed-effects models with unknown random knots. Applied Psychological Measurement, 38, 583–584.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nidhi Kohli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kohli, N., Harring, J.R. & Zopluoglu, C. A Finite Mixture of Nonlinear Random Coefficient Models for Continuous Repeated Measures Data. Psychometrika 81, 851–880 (2016). https://doi.org/10.1007/s11336-015-9462-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11336-015-9462-0

Keywords

Navigation