Skip to main content

Advertisement

Log in

Targeting Phosphatidylethanolamine with Fluorine-18 Labeled Small Molecule Probe for Apoptosis Imaging

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

Externalization of phosphatidylethanolamine (PE) in dying cells makes the phospholipid an attractive target for apoptosis imaging. However, no ideal PE-targeted positron emission tomography (PET) radiotracer was developed. The goal of the study was to develop a novel PE-targeted radiopharmaceutical to imaging apoptosis.

Procedure

In this study, we have radiolabeled PE-binding polypeptide duramycin with fluorine-18 for PET imaging of apoptosis. Al[18F]F-NOTA-PEG3-duramycin was synthesized via chelation reaction of NOTA-PEG3-duramycin with Al[18F]F. PE-binding capacity of Al[18F]F-NOTA-PEG3-duramycin was determined in a competitive radiometric PE-binding assay. The pharmacokinetic profile was evaluated in Kunming mice. The apoptosis imaging capacity of Al[18F]F-NOTA-PEG3-duramycin was evaluated using in vitro cell uptake assay with camptothecin-treated Jurkat cells, along with in vivo PET imaging using erlotinib-treated nude mice.

Results

The total synthesis procedure lasted for 30 min, with a decay-uncorrected radiochemical yield of 21.3 ± 2.6 % (n = 10). Compared with the control cells, the binding of Al[18F]F-NOTA-PEG3-duramycin with camptothecin-induced apoptotic cells resulted in a tripling increase. A competitive radiometric PE-binding assay strongly confirmed the binding of Al[18F]F-NOTA-PEG3-duramycin to PE. The biodistribution study showed rapid blood clearance, prominent kidney retention, and low liver uptake. In the in vivo PET/CT imaging, Al[18F]F-NOTA-PEG3-duramycin demonstrated 2-fold increase in erlotinib-treated HCC827 tumors in nude mice.

Conclusion

Considering the facile preparation and improved biological properties, Al[18F]F-NOTA-PEG3-duramycin seems to be a promising PET tracer candidate for imaging apoptosis in the monitoring of cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  1. Green DR, Kroemer G (2004) The pathophysiology of mitochondrial cell death. Science 305:626–629

    Article  CAS  Google Scholar 

  2. Meiler J, Schuler M (2006) Therapeutic targeting of apoptotic pathways in cancer. Curr Drug Targets 7:1361–1369

    Article  CAS  Google Scholar 

  3. Allen AM, Ben-Ami M, Reshef A et al (2012) Assessment of response of brain metastases to radiotherapy by PET imaging of apoptosis with 18F-ML-10. Eur J Nucl Med Mol Imaging 39:1400–1408

    Article  Google Scholar 

  4. Blankenberg FG, Kalinyak J, Liu L et al (2006) 99mTc-HYNIC-Annexin V SPECT imaging of acute stroke and its response to neuroprotective therapy with anti Fas ligand antibody. Eur J Nucl Med Mol Imaging 33:566–574

    Article  CAS  Google Scholar 

  5. Kartachova M, van Zandwijk N, Burgers S et al (2007) Prognostic significance of 99mTc-Hynic-rh-Annexin V scintigraphy during platinum based chemotherapy in advanced lung cancer. J Clin Oncol 25:2534–2539

    Article  CAS  Google Scholar 

  6. Oborski MJ, Laymon CM, Lieberman FS et al (2014) First use of 18F-labeled ML-10 PET to assess apoptosis change in a newly diagnosed glioblastoma multiforme patient before and early after therapy. Brain Behav 4:312–315

    Article  Google Scholar 

  7. Zeng W, Wang X, Xu P, Liu G, Eden HS, Chen X (2015) Molecular imaging of apoptosis: from micro to macro. Theranostics 5:559–582

    Article  CAS  Google Scholar 

  8. Challapalli A, Kenny LM, Hallett WA et al (2013) 18F-ICMT-11, a caspase-3-specific PET tracer for apoptosis: biodistribution and radiation dosimetry. J Nucl Med 54:1551–1556

    Article  CAS  Google Scholar 

  9. Dubash SR, Merchant S, Heinzmann K et al (2018) Clinical translation of [18F]ICMT-11 for measuring chemotherapy-induce caspase 3/7 activation in breast and lung cancer. Eur J Nucl Med Mol Imaging 45:2285–2299

    Article  CAS  Google Scholar 

  10. Zhao M (2011) Lantibiotics as probes for phosphatidylethanolamine. Amino Acids 41:1071–1079

    Article  CAS  Google Scholar 

  11. Johnson SE, Li Z, Liu Y et al (2013) Whole-body imaging of high-dose ionizing irradiation induced tissue injuries using 99m Tc-duramycin. J Nucl Med 54:1397–1403

    Article  CAS  Google Scholar 

  12. Elvas F, Vangestel C, Pak K, Vermeulen P, Gray B, Stroobants S, Staelens S, Wyffels L (2016) Early prediction of tumor response to treatment: preclinical validation of 99mTc-duramycin. J Nucl Med 57:805–811

    Article  CAS  Google Scholar 

  13. Liu Z, Larsen BT, Lerman LO, Gray BD, Barber C, Hedayat AF, Zhao M, Furenlid LR, Pak KY, Woolfenden JM (2016) Detection of atherosclerotic plaques in ApoE-deficient mice using 99mTc-duramycin. Nucl Med Biol 43:496–505

    Article  CAS  Google Scholar 

  14. Audi SH, Jacobs ER, Zhang X et al (2017) Protection by inhaled hydrogen therapy in a rat model of acute lung injury can be tracked in vivo using molecular imaging. Shock 48(4):467–476

    Article  CAS  Google Scholar 

  15. Medhora M, Haworth S, Liu Y et al (2016) Biomarkers for radiation pneumonitis using noninvasive molecular imaging. J Nucl Med 57:1296–1301

    Article  CAS  Google Scholar 

  16. Li Y, Liu C, Xu X, Lu X, Luo J, Gray B, Pak KY, Cheng J, Zhang Y (2018) [99mTc]duramycin, a potential molecular probe for early prediction of tumor response after chemotherapy. Nucl Med Biol 66:18–25

    Article  CAS  Google Scholar 

  17. Zhao M, Li Z (2012) A single-step kit formulation for the 99mTc-labeling of HYNIC-duramycin. Nucl Med Biol 39:1006–1011

    Article  CAS  Google Scholar 

  18. Wang L, Wang F, Fang W et al (2015) The feasibility of imaging myocardial ischemic/reperfusion injury using 99mTc-labeled duramycin in a porcine model. Nucl Med Biol 42:198–204

    Article  Google Scholar 

  19. Yao S, Hu K, Tang G et al (2015) Positron emission tomography imaging of cell death with [18F]FPDuramycin. Apoptosis 19:841–850

    Article  Google Scholar 

  20. McBride WJ, Sharkey RM, Karacay H et al (2009) A novel method of 18F radiolabeling for PET. J Nucl Med 50:991–998

    Article  CAS  Google Scholar 

  21. Luan X, Huang Y, Gao S, Sun X, Wang S, Ma L, Teng X, Lu H, Yu J, Yuan S (2016) 18F-alfatide PET/CT may predict short-term outcome of concurrent chemoradiotherapy in patients with advanced non-small cell lung cancer. Eur J Nucl Med Mol Imaging 43:2336–2342

    Article  CAS  Google Scholar 

  22. Wu J, Wang S, Zhang X et al (2018) 18F-Alfatide II PET/CT for identification of breast cancer: a preliminary clinical study. J Nucl Med 59:1809–1816

    Article  CAS  Google Scholar 

  23. Liu T, Liu C, Xu X et al (2019) Preclinical evaluation and pilot clinical of Al18F-PSMA-BCH for prostate cancer imaging. J Nucl Med. https://doi.org/10.2967/jnumed.118.221671

  24. Lieberman BP, Ploessl K, Wang L et al (2011) PET imaging of glutaminolysis in tumors by 18F-(2S, 4R)4-fluoroglutamine. J Nucl Med 52:1947–1955

    Article  CAS  Google Scholar 

  25. Perreault A, Richter S, Bergman C et al (2016) Targeting phosphatidylserine with a 64Cu-labeled peptide for molecular imaging of apoptosis. Mol Pharm 13:3564–3577

    Article  CAS  Google Scholar 

  26. Zhao M, Li Z, Bugenhagen S (2008) 99mTc-labeled duramycin as a novel phosphatidylethanolamine-binding molecular probe. J Nucl Med 49:1345–1352

    Article  CAS  Google Scholar 

  27. Yao S, Hu K, Tang G et al (2015) Molecular PET imaging of cyclophosphamide induced apoptosis with 18F-ML-8. Biomed Res Int 317403. https://doi.org/10.1155/2015/317403

  28. Rix A, Drude NI, Mrugalia A et al (2019) Assessment of chemotherapy-induced organ damage with Ga-68 labeled duramycin. Mol Imaging Biol:1–11. https://doi.org/10.1007/s11307-019-01417-3

  29. Bernard-Gauthier V, Lepage ML, Waengler B, Bailey JJ, Liang SH, Perrin DM, Vasdev N, Schirrmacher R (2018) Recent advances in 18F radiochemistry: a focus on B - 18F, Si - 18F, Al -18F, and C - 18F radiofluorination via spirocyclic iodonium ylides. J Nucl Med 59:568–572

    Article  CAS  Google Scholar 

  30. Palmieri L, Elvas F, Vangestel C et al (2018) [99mTc]duramycin for cell death imaging: impact of kit formulation, purification and species difference. Nucl Med Biol 56:1–9

    Article  CAS  Google Scholar 

  31. Elvas F, Vangestel C, Rapic S, Verhaeghe J, Gray B, Pak K, Stroobants S, Staelens S, Wyffels L (2015) Characterization of [99mTc]duramycin as a SPECT imaging agent for early assessment of tumor apoptosis. Mol Imaging Biol 17:838–847

    Article  CAS  Google Scholar 

  32. Da Pieve C, Allot L, Martins CD et al (2016) Efficient 18F-AlF radiolabeling of ZHER3:8683 affibody molecule for imaging of HER3 positive tumors. Bioconjug Chem 27:1839–1849

    Article  Google Scholar 

  33. González Trotter DE, Meng X, McQuade P, Rubins D, Klimas M, Zeng Z, Connolly BM, Miller PJ, O'Malley SS, Lin SA, Getty KL, Fayadat-Dilman L, Liang L, Wahlberg E, Widmark O, Ekblad C, Frejd FY, Hostetler ED, Evelhoch JL (2017) In vivo imaging of the programmed death ligand 1 by 18F PET. J Nucl Med 58(11):1852–1857

    Article  Google Scholar 

  34. Piotrowska Z, Sequist LV (2016) Treatment of EGFR-mutant lung cancers after progression in patients receiving first-line EGFR tyrosine kinase inhibitors: a review. JAMA Oncol 2:948–954

    Article  Google Scholar 

  35. Rosell R, Carcereny E, Gervais R et al (2012) Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomized phase 3 trial. Lancet Oncol 13:239–246

    Article  CAS  Google Scholar 

  36. Zhou C, Wu YL, Chen G et al (2011) Erlotinib versus chemotherapy as first-line treatment for patients with advanced EGFR mutation-positive non-small-cell lung cancer (OPTIMAL, CTONG-0802): a multicentre, open-label, randomised, phase 3 study. Lancet Oncol 12:735–742

    Article  CAS  Google Scholar 

  37. Hu S, Kiesewetter DO, Zhu L, Guo N, Gao H, Liu G, Hida N, Lang L, Niu G, Chen X (2012) Longitudinal PET imaging of doxorubicin-induced cell death with 18F-Annexin V. Mol Imaging Biol 14:762–770

    Article  Google Scholar 

  38. Wang MW, Wang F, Zheng YJ, Zhang YJ, Zhang YP, Zhao Q, Shen CK, Wang Y, Sun SH (2013) An in vivo molecular imaging probe (18)F-Annexin B1 for apoptosis detection by PET/CT: preparation and preliminary evaluation. Apoptosis 18:238–247

    Article  Google Scholar 

  39. Belhocine T, Steinmetz N, Hustinx R et al (2002) Increase uptake of the apoptosis-imaging agent 99mTc recombinant human Annexin V in human tumors after one course of chemotherapy as a predictor of tumor response and patient prognosis. Clin Cancer Res 8(9):2766–2774

    CAS  PubMed  Google Scholar 

  40. Mandl SJ, Man C, Edinger M et al (2004) Multi-modality imaging identifies key times for annexin V imaging as an early predictor of therapeutic outcome. Mol Imaging 3(1):1–8

    Article  Google Scholar 

  41. Vance JE (2008) Phosphatidylserine and phosphatidylethanolamine in mammalian cells: two metabolically related aminophospholipids. J Lipid Res 49:1377–1387

    Article  CAS  Google Scholar 

Download references

Funding

This work was funded by the National Natural Science Foundation (Nos. 81571704, 81671719, 81701723), the Science and Technology Foundation of Guangdong Province (Nos. 2016B090920087, 2018B030337001), and the Science and Technology Planning Project Foundation of Guangzhou (Nos. 201604020169, 201510010145).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dahong Nie or Ganghua Tang.

Ethics declarations

The experiments were approved by the Institutional animal care and utilization committee (IACUU) of the first affiliated hospital, Sun Yat-sen University.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(PDF 594 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, G., Liu, S., Ma, H. et al. Targeting Phosphatidylethanolamine with Fluorine-18 Labeled Small Molecule Probe for Apoptosis Imaging. Mol Imaging Biol 22, 914–923 (2020). https://doi.org/10.1007/s11307-019-01460-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-019-01460-0

Key words

Navigation