Skip to main content
Log in

Multimodality Hyperpolarized C-13 MRS/PET/Multiparametric MR Imaging for Detection and Image-Guided Biopsy of Prostate Cancer: First Experience in a Canine Prostate Cancer Model

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

To assess whether simultaneous hyperpolarized C-13 magnetic resonance spectroscopy (MRS)/positron emission tomography (PET)/multiparametric magnetic resonance (mpMR) imaging is feasible in an orthotopic canine prostate cancer (PCa) model using a clinical PET/MR system and whether the combined imaging datasets can be fused with transrectal ultrasound (TRUS) in real time for multimodal image fusion-guided targeted biopsy of PCa.

Procedures

Institutional Animal Care and Use Committee approval was obtained for this study. Canine prostate adenocarcinoma (Ace-1) cells were orthotopically injected into the prostate of four dogs. Once tumor engraftment was confirmed by TRUS, simultaneous hyperpolarized C-13 MRS of [1-13C]pyruvate, PET (2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG), [68Ga]NODAGA-SCH1), and mpMR (T2W, DWI) imaging was performed using a clinical PET/MR system. Multimodality imaging data sets were then fused with TRUS and image-guided targeted biopsy was performed. Imaging results were then correlated with histological findings.

Results

Successful tumor engraftment was histologically confirmed in three of the four dogs (dogs 2, 3, and 4) and simultaneous C-13 MRS/PET/mpMR was feasible in all three. In dog 2, C-13 MRS showed increased lactate signal in the tumor (lactate/totalC = 0.47) whereas mpMR did not show any signal changes. In dog 3, [18F]FDG-PET (SUVmean = 1.90) and C-13 MRS (lactate/totalC = 0.59) showed elevated metabolic activity in the tumor. In dog 4, [18F]FDG (SUVmean = 2.43), [68Ga]NODAGA-SCH1 (SUVmean = 0.75), and C-13 MRS (Lac/totalC = 0.53) showed elevated uptake in tumor compared to control tissue and multimodal image fusion-guided biopsy of the tumor was successfully performed.

Conclusion

Simultaneous C-13 MRS/PET/mpMR imaging and multimodal image fusion-guided biopsy is feasible in a canine PCa model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A (2016) Cancer statistics, 2016. CA Cancer J Clin 66:7–30

    Article  Google Scholar 

  2. Wagenlehner FME, Van Oostrum E, Tenke P et al (2013) Infective complications after prostate biopsy: outcome of the Global Prevalence Study of Infections in Urology (GPIU) 2010 and 2011, a prospective multinational multicentre prostate biopsy study. Eur Urol 63:521–527

    Article  PubMed  Google Scholar 

  3. Loeb S, Bjurlin MA, Nicholson J, Tammela TL, Penson DF, Carter HB, Carroll P, Etzioni R (2014) Overdiagnosis and overtreatment of prostate cancer. Eur Urol 65:1046–1055

    Article  PubMed  PubMed Central  Google Scholar 

  4. Sonn GA, Chang E, Natarajan S, Margolis DJ, Macairan M, Lieu P, Huang J, Dorey FJ, Reiter RE, Marks LS (2014) Value of targeted prostate biopsy using magnetic resonance-ultrasound fusion in men with prior negative biopsy and elevated prostate-specific antigen. Eur Urol 65:809–815

    Article  PubMed  Google Scholar 

  5. Johnson LM, Turkbey B, Figg WD, Choyke PL (2014) Multiparametric MRI in prostate cancer management. Nat Rev Clin Oncol 11:346–353

    Article  PubMed  PubMed Central  Google Scholar 

  6. Cash H, Maxeiner A, Stephan C, Fischer T, Durmus T, Holzmann J, Asbach P, Haas M, Hinz S, Neymeyer J, Miller K, Günzel K, Kempkensteffen C (2016) The detection of significant prostate cancer is correlated with the Prostate Imaging Reporting and Data System (PI-RADS) in MRI/transrectal ultrasound fusion biopsy. World J Urol 34:525–532

    Article  PubMed  Google Scholar 

  7. Park SY, Jung DC, Oh YT et al (2016) Prostate cancer: PI-RADS version 2 helps preoperatively predict clinically significant cancers. Radiology 280:151133–151133

    Google Scholar 

  8. Pinto PA, Chung PH, Rastinehad AR, Baccala AA Jr, Kruecker J, Benjamin CJ, Xu S, Yan P, Kadoury S, Chua C, Locklin JK, Turkbey B, Shih JH, Gates SP, Buckner C, Bratslavsky G, Linehan WM, Glossop ND, Choyke PL, Wood BJ (2011) Magnetic resonance imaging/ultrasound fusion guided prostate biopsy improves cancer detection following transrectal ultrasound biopsy and correlates with multiparametric magnetic resonance imaging. J Urol 186:1281–1285

    Article  PubMed  PubMed Central  Google Scholar 

  9. Filson CP, Natarajan S, Margolis DJA, Huang J, Lieu P, Dorey FJ, Reiter RE, Marks LS (2016) Prostate cancer detection with magnetic resonance-ultrasound fusion biopsy: the role of systematic and targeted biopsies. Cancer 122:884–892

    Article  PubMed  PubMed Central  Google Scholar 

  10. Le JD, Tan N, Shkolyar E et al (2015) Multifocality and prostate cancer detection by multiparametric magnetic resonance imaging: correlation with whole-mount histopathology. Eur Urol 67:569–576

    Article  PubMed  Google Scholar 

  11. Priester A, Natarajan S, Khoshnoodi P et al (2016) Magnetic resonance imaging underestimation of prostate cancer geometry: use of patient-specific molds to correlate images with whole-mount pathology. J Urol 197:320–326

    Article  PubMed  PubMed Central  Google Scholar 

  12. Wilson DM, Kurhanewicz J (2014) Hyperpolarized 13C MR for molecular imaging of prostate cancer. J Nucl Med 55:1567–1572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hurd RE, Yen YF, Chen A, Ardenkjaer-Larsen JH (2012) Hyperpolarized 13C metabolic imaging using dissolution dynamic nuclear polarization. J Magn Reson Imaging 36:1314–1328

    Article  PubMed  Google Scholar 

  14. Day SE, Kettunen MI, Fa G et al (2007) Detecting tumor response to treatment using hyperpolarized 13C magnetic resonance imaging and spectroscopy. Nat Med 13:1382–1387

    Article  CAS  PubMed  Google Scholar 

  15. Gutte H, Hansen AE, Johannesen HH, Clemmensen AE, Ardenkjær-Larsen JH, Nielsen CH, Kjær A (2015) The use of dynamic nuclear polarization 13C-pyruvate MRS in cancer. Am J Nucl Med Mol Imaging 5:548–560

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Nelson SJ, Kurhanewicz J, Vigneron DB et al (2013) Metabolic imaging of patients with prostate cancer using hyperpolarized [1-13C]pyruvate. Sci Transl Med 5:198ra108–198ra108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Albers MJ, Bok R, Chen AP, Cunningham CH, Zierhut ML, Zhang VY, Kohler SJ, Tropp J, Hurd RE, Yen YF, Nelson SJ, Vigneron DB, Kurhanewicz J (2008) Hyperpolarized 13C lactate, pyruvate, and alanine: noninvasive biomarkers for prostate cancer detection and grading. Cancer Res 68:8607–8615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Minamimoto R, Hancock S, Schneider B, Chin FT, Jamali M, Loening A, Vasanawala S, Gambhir SS, Iagaru A (2016) Pilot comparison of 68Ga-RM2 PET and 68Ga-PSMA-11 PET in patients with biochemically recurrent prostate cancer. J Nucl Med 57:557–562

    Article  CAS  PubMed  Google Scholar 

  19. Keller JM, Schade GR, Ives K, Cheng X, Rosol TJ, Piert M, Siddiqui J, Roberts WW, Keller ET (2013) A novel canine model for prostate cancer. Prostate 73:952–959

    Article  PubMed  Google Scholar 

  20. Gutte H, Hansen AE, Larsen MM et al (2015) Simultaneous hyperpolarized 13C-pyruvate MRI and 18F-FDG PET (HyperPET) in 10 dogs with cancer. J Nucl Med 56:1786–1792

    Article  CAS  PubMed  Google Scholar 

  21. Leroy BE, Northrup N (2009) Prostate cancer in dogs: comparative and clinical aspects. Vet J 180:149–162

    Article  PubMed  Google Scholar 

  22. Coffey DS, Walsh PC (1990) Clinical and experimental studies of benign prostatic hyperplasia. Urol Clin North Am 17:461–475

    CAS  PubMed  Google Scholar 

  23. Waters DJ, Bostwick DG (1997) The canine prostate is a spontaneous model of intraepithelial neoplasia and prostate cancer progression. Anticancer Res 17:1467–1470

    CAS  PubMed  Google Scholar 

  24. Smith J (2008) Canine prostatic disease: a review of anatomy, pathology, diagnosis, and treatment. Theriogenology 70:375–383

    Article  CAS  PubMed  Google Scholar 

  25. Markwalder R, Reubi JC (1999) Gastrin-releasing peptide receptors in the human prostate: relation to neoplastic transformation. Cancer Res 59:1152–1159

    CAS  PubMed  Google Scholar 

  26. Sun Y, Ma X, Zhang Z, Sun Z, Loft M, Ding B, Liu C, Xu L, Yang M, Jiang Y, Liu J, Xiao Y, Cheng Z, Hong X (2016) Preclinical study on GRPR-targeted 68Ga-probes for PET imaging of prostate cancer. Bioconjug Chem 27:1857–1864

    Article  CAS  PubMed  Google Scholar 

  27. Roivainen A, Kahkonen E, Luoto P, Borkowski S, Hofmann B, Jambor I, Lehtio K, Rantala T, Rottmann A, Sipila H, Sparks R, Suilamo S, Tolvanen T, Valencia R, Minn H (2013) Plasma pharmacokinetics, whole-body distribution, metabolism, and radiation dosimetry of 68Ga bombesin antagonist BAY 86-7548 in healthy men. J Nucl Med 54:867–872

    Article  CAS  PubMed  Google Scholar 

  28. Podo F, Serkova NJ, Nelson S, Brindle KM, Serrao EM (2016) Potential clinical roles for metabolic imaging with hyperpolarized [1-13C]pyruvate. Front Oncol 6:593389–593359

    Article  Google Scholar 

  29. Keshari KR, Sriram R, Van Criekinge M et al (2013) Metabolic reprogramming and validation of hyperpolarized 13C lactate as a prostate cancer biomarker using a human prostate tissue slice culture bioreactor. Prostate 73:1171–1181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Siddiqui MM, Rais-Bahrami S, Turkbey B, George AK, Rothwax J, Shakir N, Okoro C, Raskolnikov D, Parnes HL, Linehan WM, Merino MJ, Simon RM, Choyke PL, Wood BJ, Pinto PA (2015) Comparison of MR/ultrasound fusion-guided biopsy with ultrasound-guided biopsy for the diagnosis of prostate cancer. J Am Med Assoc 313:390–397

    Article  CAS  Google Scholar 

  31. Donaldson Ia AR, Barratt D et al (2014) Focal therapy: patients, interventions, and outcomes—a report from a consensus meeting. Eur Urol 67:771–777

    Article  PubMed  Google Scholar 

  32. Sonn GA, Natarajan S, Margolis DJA, MacAiran M, Lieu P, Huang J, Dorey FJ, Marks LS (2013) Targeted biopsy in the detection of prostate cancer using an office based magnetic resonance ultrasound fusion device. J Urol 189:86–91

    Article  PubMed  Google Scholar 

  33. Sosnowski R, Zagrodzka M, Borkowski T (2016) The limitations of multiparametric magnetic resonance imaging also must be borne in mind. Cent Eur J Urol 69:22–23

    Google Scholar 

  34. De Rooij M, Hamoen EHJ, Fütterer JJ et al (2014) Accuracy of multiparametric MRI for prostate cancer detection: a meta-analysis. Am J Roentgenol 202:343–351

    Article  Google Scholar 

  35. Venderink W, van Luijtelaar A, Bomers JG et al (2017) Results of targeted biopsy in men with magnetic resonance imaging lesions classified equivocal, likely or highly likely to be clinically significant prostate cancer. Eur Urol 73:353–360

    Article  Google Scholar 

  36. MacKenzie JD, Yen Y-F, Mayer D, Tropp JS, Hurd RE, Spielman DM (2011) Detection of inflammatory arthritis by using hyperpolarized 13C-pyruvate with MR imaging and spectroscopy. Radiology 259:414–420

    Article  PubMed  PubMed Central  Google Scholar 

  37. Najac C, Chaumeil MM, Kohanbash G, Guglielmetti C, Gordon JW, Okada H, Ronen SM (2016) Detection of inflammatory cell function using 13C magnetic resonance spectroscopy of hyperpolarized [6-13C]-arginine. Sci Rep 6:31397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Shaghaghi H, Kadlecek S, Deshpande C, Siddiqui S, Martinez D, Pourfathi M, Hamedani H, Ishii M, Profka H, Rizi R (2014) Metabolic spectroscopy of inflammation in a bleomycin-induced lung injury model using hyperpolarized 1-13C pyruvate. NMR Biomed 27:939–947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The canine PCa cells (Ace-1) were obtained from Dr. Thomas Rosol, Department of Veterinary Biosciences, Ohio State University. We would like to thank Philips for providing the EPIQ7 ultrasound system, C10-4ec transducer, and PercuNav image fusion software. We thank Praveen Gulaka, Valentina Taviani, Dawn Holley, and Harsh Gandhi for their assistance with PET/MR acquisition and reconstruction; Jim Strommer for help with Fig. 1; Don Samaan from Health Physics; veterinary service center staff; and members of Willmann, Spielman, Cheng labs, and Frezghi Habte who helped with this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen K. Willmann.

Ethics declarations

The Institutional Animal Care and Use Committee approved all procedures in this study.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(PDF 158 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bachawal, S.V., Park, J.M., Valluru, K.S. et al. Multimodality Hyperpolarized C-13 MRS/PET/Multiparametric MR Imaging for Detection and Image-Guided Biopsy of Prostate Cancer: First Experience in a Canine Prostate Cancer Model. Mol Imaging Biol 21, 861–870 (2019). https://doi.org/10.1007/s11307-018-1235-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-018-1235-6

Key words

Navigation