Skip to main content

Advertisement

Log in

In Vivo Imaging of Lymph Node Migration of MNP- and 111In-Labeled Dendritic Cells in a Transgenic Mouse Model of Breast Cancer (MMTV-Ras)

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

The authors present a protocol for the in vivo evaluation, using different imaging techniques, of lymph node (LN) homing of tumor-specific dendritic cells (DCs) in a murine breast cancer model.

Procedures

Bone marrow DCs were labeled with paramagnetic nanoparticles (MNPs) or 111In-oxine. Antigen loading was performed using tumor lysate. Mature DCs were injected into the footpads of transgenic tumor-bearing mice (MMTV-Ras) and DC migration was tracked by magnetic resonance imaging (MRI) and single-photon emission computed tomography (SPECT). Ex vivo analyses were performed to validate the imaging data.

Results

DC labeling, both with MNPs and with 111In-oxine, did not affect DC phenotype or functionality. MRI and SPECT allowed the detection of iron and 111In in both axillary and popliteal LNs. Immunohistochemistry and γ-counting revealed the presence of DCs in LNs.

Conclusions

MRI and SPECT imaging, by allowing in vivo dynamic monitoring of DC migration, could further the development and optimization of efficient anti-cancer vaccines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

DC:

dendritic cell

DC-LAMP:

dendritic cell-lysosomal associated membrane glycoprotein

FOV:

field of view

GM-CSF:

granulocyte macrophage colony-stimulating factor

iDC:

immature DC

IL-4:

interleukin-4

LN:

lymph node

LPS:

lipopolysaccharide

mDC:

mature DC

MHC:

major histocompatibility complex

MMTV:

murine mammary tumor virus

MNPs:

paramagnetic nanoparticles

MRI:

magnetic resonance imaging

SDD:

silicon drift detector

SPECT:

single photon emission tomography

T2:

transverse relaxation time

TE:

echo time

TEM:

transmission electron microscopy

TNFα:

tumor necrosis factor α

TR:

repetition time

References

  1. Tuyaerts S, Aerts JL, Corthals J et al (2007) Current approaches in dendritic cell generation and future implications for cancer immunotherapy. Cancer Immunol Immun 56(10):1513–1537

    CAS  Google Scholar 

  2. Nouri-Shirazi M, Banchereau J, Fay J, Palucka K (2000) Dendritic cell based tumor vaccines. Immunol Lett 74(1):5–10

    Article  PubMed  CAS  Google Scholar 

  3. Wan H, Dupasquier M (2005) Dendritic cells in vivo and in vitro. Cell Mol Immunol 2(1):28–35

    PubMed  Google Scholar 

  4. Mosca PJ, Lyerly HK, Clay TM, Morse MA, Lyerly HK (2007) Dendritic cell vaccines. Front Biosci 12:4050–4060

    Article  PubMed  CAS  Google Scholar 

  5. Maldonado-Lopez R, Moser M (2001) Dendritic cell subsets and the regulation of Th1/Th2 responses. Semin Immunol 13(5):275–282

    Article  PubMed  CAS  Google Scholar 

  6. Lanzavecchia A, Sallusto F (2001) Regulation of T cell immunity by dendritic cells. Cell 106(3):263–266

    Article  PubMed  CAS  Google Scholar 

  7. Yu JS, Liu G, Ying H et al (2004) Vaccination with tumor lysate-pulsed dendritic cells elicits antigen-specific, cytotoxic T-cells in patients with malignant glioma. Cancer Res 64(14):4973–4979

    Article  PubMed  CAS  Google Scholar 

  8. Svane IM, Pedersen AE, Johansen JS et al (2007) Vaccination with p53 peptide-pulsed dendritic cells is associated with disease stabilization in patients with p53 expressing advanced breast cancer; monitoring of serum YKL-40 and IL-6 as response biomarkers. Cancer Immunol Immunother 56(9):1485–1499

    Article  PubMed  CAS  Google Scholar 

  9. Mittendorf EA, Storrer CE, Foley RJ et al (2006) Evaluation of the HER2/neu-derived peptide GP2 for use in a peptide-based breast cancer vaccine trial. Cancer 106(11):2309–2317

    Article  PubMed  CAS  Google Scholar 

  10. Katano M, Morisaki T, Koga K et al (2005) Combination therapy with tumor cell-pulsed dendritic cells and activated lymphocytes for patients with disseminated carcinomas. Anticancer Res 25(6A):3771–3776

    PubMed  Google Scholar 

  11. Guardino AE, Rajapaksa R, Ong KH, Sheehan K, Levy R (2006) Production of myeloid dendritic cells (DC) pulsed with tumor-specific idiotype protein for vaccination of patients with multiple myeloma. Cytotherapy 8(3):277–289

    Article  PubMed  CAS  Google Scholar 

  12. Ovali E, Dikmen T, Sonmez M et al (2007) Active immunotherapy for cancer patients using tumor lysate pulsed dendritic cell vaccine: a safety study. J Exp Clin Cancer Res 26(2):209–214

    PubMed  CAS  Google Scholar 

  13. Kyte JA, Mu L, Aamdal S et al (2006) Phase I/II trial of melanoma therapy with dendritic cells transfected with autologous tumor-mRNA. Cancer Gene Ther 13(10):905–918

    Article  PubMed  CAS  Google Scholar 

  14. Palucka AK, Ueno H, Connolly J et al (2006) Dendritic cells loaded with killed allogeneic melanoma cells can induce objective clinical responses and MART-1 specific CD8+ T-cell immunity. J Immunother 29(5):545–557

    Article  PubMed  CAS  Google Scholar 

  15. Ridolfi R, Riccobon A, Galassi R et al (2004) Evaluation of in vivo labelled dendritic cell migration in cancer patients. J Transl Med 2:27

    Article  PubMed  Google Scholar 

  16. Quillien V, Moisan A, Carsin A et al (2005) Biodistribution of radiolabelled human dendritic cells injected by various routes. Eur J Nucl Med Mol Imaging 32(7):731–741

    Article  PubMed  CAS  Google Scholar 

  17. Gilboa E (2007) DC-based cancer vaccines. J Clin Invest 117(5):1195–1203

    Article  PubMed  CAS  Google Scholar 

  18. Cerundolo V, Hermans IF, Salio M (2004) Dendritic cells: a journey from laboratory to clinic. Nat Immunol 5(1):7–10

    Article  PubMed  CAS  Google Scholar 

  19. Timmerman JM, Levy R (1999) Dendritic cell vaccines for cancer immunotherapy. Annu Rev Med 50:507–529

    Article  PubMed  CAS  Google Scholar 

  20. Lucignani G, Ottobrini L, Martelli C, Rescigno M, Clerici M (2006) Molecular imaging of cell-mediated cancer immunotherapy. Trends Biotechnol 24(9):410–418

    Article  PubMed  CAS  Google Scholar 

  21. De Vries IJM, Lesterhuis WJ, Barentsz JO et al (2005) Magnetic resonance tracking of dendritic cells in melanoma patients for monitoring of cellular therapy. Nat Biotechnol 23(11):1407–1413

    Article  PubMed  Google Scholar 

  22. Lutz MB, Kukutsch N, Ogilvie ALJ et al (1999) An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow. J Immunol Meth 223:77–92

    Article  CAS  Google Scholar 

  23. Baumjohann D, Hess A, Budinsky L et al (2006) In vivo magnetic resonance imaging of DC migration into the draining lymph nodes of mice. Eur J Immunol 36:2544–2555

    Article  PubMed  CAS  Google Scholar 

  24. Baumjohann D, Hess A, Budinsky L et al (2006) Non-invasive imaging of dendritic cell migration in vivo. Immunobiology 211:587–597

    Article  PubMed  CAS  Google Scholar 

  25. Bhirde A, Xie J, Swierczewska M, Chen X (2011) Nanoparticles for cell labeling. Nanoscale 3:142–153

    Article  PubMed  CAS  Google Scholar 

  26. Cheng D, Hong G, Wang W et al (2011) Nonclustered magnetite nanoparticle encapsulated biodegradable polymeric micelles with enhanced properties for in vivo tumor imaging. J Mater Chem 21:4796–4804

    Article  CAS  Google Scholar 

  27. Taneja P, Frazier DP, Kending RD et al (2009) MMTV mouse models and the diagnostic values of MMTV-like sequences in human breast cancer. Expert Rev Mol Diagn 9(5):423–440

    Article  PubMed  CAS  Google Scholar 

  28. Pattengale PK, Stewart TA, Leder A et al (1989) Animal models of human disease. Pathology and molecular biology of spontaneous neoplasm occurring in transgenic mice carrying and expressing activated cellular oncogenes. Am J Pathol 135(1):39–61

    PubMed  CAS  Google Scholar 

  29. Huang AL, Ostrowski MC, Berard D, Hager G (1981) Glucocorticoid regulation of the Ha-MuSV p 21 gene conferred by sequences from mouse mammary tumor virus. Cell 27:245–255

    Article  PubMed  CAS  Google Scholar 

  30. Zappi E, Lombardo W (1984) Combined Fontana–Massono/Perl’s staining. Am J Dermatophat 6(suppl):143–145

    Google Scholar 

  31. Boutry S, Brunin S, Mahieu I et al (2008) Magnetic labeling of non-phagocytic adherent cells with iron oxide nanoparticles: a comprehensive study. Contrast Media Mol Imaging 3(6):223–232

    Article  PubMed  CAS  Google Scholar 

  32. Montet-Abou K, Montet X, Weissleder R, Josephson L (2007) Cell internalization of magnetic nanoparticles using transfection agents. Mol Imaging 6(1):1–9

    PubMed  CAS  Google Scholar 

  33. Qiu J, Li GW, Sui YF et al (2006) Heat-shocked tumor cell lysate-pulsed dendritic cells induce effective anti-tumor immune response in vivo. World J Gastroenterol 12(3):473–478

    PubMed  CAS  Google Scholar 

  34. Van den Broeck W, Derore A, Simoens P (2006) Anatomy and nomenclature of murine lymph nodes: Descriptive study and nomenclatory standardization in BALB/cAnNCrl mice. J Immunol Meth 312:12–19

    Article  Google Scholar 

  35. Kosaka N, Ogawa M, Sato N, Choyke PL, Kobayashi H (2009) In vivo real-time, multicolor, quantum dot lymphatic imaging. J Invest Dermatol 129:2818–2822

    Article  PubMed  CAS  Google Scholar 

  36. Poli GL, Fiorini C, Gola A et al (2009) The HICAM project: development of a High- Resolution Gamma Camera. 9th National Congress of the Italian Association of Nuclear Medicine and Molecular Imaging (AIMN), March 20–24, 2009, Florence Italy, published on the Q J Nucl Med Mol Imaging 53 (suppl. 1 to issue 2)

  37. Fiorini C, Gola A, Peloso R et al (2010) The DRAGO gamma camera. Rev Sci Instrum 81:44301–44307

    Article  CAS  Google Scholar 

  38. Verdijk P, Scheenen TWJ, Lesterhuis WJ et al (2006) Sensitivity of magnetic resonance imaging of dendritic cells for in vivo tracking of cellular cancer vaccines. Int J Cancer 120:978–984

    Article  Google Scholar 

  39. Gratton SE, Ropp PA, Pohlhaus PD et al (2008) The effect of particle design on cellular internalization pathways. Proc Natl Acad Sci USA 105(33):11613–11618

    Article  PubMed  CAS  Google Scholar 

  40. Dobrovolskaia MA, Aggarwal P, Hall JE, McNeil SE (2008) Preclinical studies to understand nanoparticle interaction with the immune system and its potential effects on nanoparticle biodistribution. Mol Pharmaceut 5(4):487–495

    Article  CAS  Google Scholar 

  41. Kellerman SA, Hudak S, Oldham ER, Liu YJ, Mcevoy LM (1999) The CC chemokine receptor-7 ligands 6Ckine and macrophage inflammatory protein-3β are potent chemoattractants for in vitro and in vivo-derived dendritic cells. J Immunol 162:3859–3864

    Google Scholar 

  42. Lewin M, Carlesso N, Tung CH et al (2000) Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat Biotechnol 18:410–414

    Article  PubMed  CAS  Google Scholar 

  43. Ahrens ET, Feili-Hariri M, Xu H, Genove G, Morel PA (2003) Receptor-mediated endocytosis of iron-oxide particles provides efficient labeling of dendritic cells for in vivo MR imaging. Magn Reson Med 49:1006–1013

    Article  PubMed  CAS  Google Scholar 

  44. Yigit MV, Mazumdar D, Kim HK, Lee JH, Odintsov B, Lu Y (2007) Smart “turn-on” magnetic resonance contrast agents based on aptamer-functionalized superparamagnetic iron oxide nanoparticles. Chembiochem 8:1675–1678

    Article  PubMed  CAS  Google Scholar 

  45. Josephson L, Kircher MF, Mahmood U, Tang Y, Weissleder R (2002) near-infrared fluorescent nanoparticles as combined MR/optical imaging probes. Bioconjug Chem 13:554–560

    Article  PubMed  CAS  Google Scholar 

  46. Zhiyong W, Gang L, Jiayu S et al (2009) Self-assembly of magnetite nanocrystals with amphiphilic polyethylenimine: structures and applications in magnetic resonance imaging. J Nanosci Nanotechnol 9:378–385

    Article  Google Scholar 

  47. Benderbous S, Corot C, Jacobs P, Bonnemain B (1996) Superparamagnetic agents: physicochemical characteristics and preclinical imaging evaluation. Acad Radiol 3(Suppl 2):S292–S294

    Article  PubMed  Google Scholar 

  48. Issekutz T, Chin W, Hay JB (1980) Measurement of lymphocyte traffic with indium-111. Clin Exp Immunol 39(1):215–221

    PubMed  CAS  Google Scholar 

  49. Lanzavecchia A, Sallusto F (2001) The instructive role of dendritic cells on T cell responses: lineages, plasticity and kinetics. Curr Opin Immunol 31:291–298

    Article  Google Scholar 

  50. Dodd SJ, Williams M, Suhan JP et al (1999) Detection of single mammalian cells by high-resolution magnetic resonance imaging. Biophys J 76(1 pt 1):103–109

    Article  PubMed  CAS  Google Scholar 

  51. Kobukai S, Baheza R, Cobb JG et al (2010) Magnetic nanoparticles for imaging dendritic cells. Magn Reson Med 63:1383–1390

    Article  PubMed  Google Scholar 

  52. Pham W, Kobukai S, Hotta C, Gore JC (2009) Dendritic cells; therapy and imaging. Exp Opin Biol Ther 9(5):539–564

    Article  CAS  Google Scholar 

  53. Briley-Saebo K, Leboeuf M, Dickson S et al (2010) Longitudinal tracking of human dendritic cells in murine models using magnetic resonance imaging. Magn Reson Med 64:1510–1519

    Article  PubMed  Google Scholar 

  54. Helfer BM, Balducci A, Nelson AD et al (2010) Functional assessment of human dendritic cells labeled for in vivo 19F magnetic resonance imaging cell tracking. Cytotherapy 12:238–250

    Article  PubMed  CAS  Google Scholar 

  55. Rohani R, de Chickera SN, Willert C et al (2010) In vivo cellular MRI or dendritic cell migration using micrometer-sized iron oxide (MPIO) particles. Mol Imaging Biol. doi:10.1007/s11307-010-0403-0

  56. Allan RS, Waithman J, Bedoui S et al (2006) Migratory dendritic cells transfer antigen to a lymph node-resident dendritic cell population for efficient CTL priming. Immunity 25:153–162

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Fabio Corsi and Mr. Raffaele Allevi (Centro di microscopia elettronica per lo sviluppo delle nanotecnologie applicate alla medicina, University of Milan) for TEM analysis, Mrs. Delfina Tosi (University of Milan) for immunohistochemistry technical support and Dr. Gemma Texido (Nerviano Medical Sciences) for providing the MMTV-Ras founder animals. This work is supported by the FP6 funded HI-CAM project (LSHC-CT-2006-037737), PRIN (20082NHWH9) and AIRC (IG2009-9311). The authors are grateful to Ms Catherine Wrenn for her advice and skilful editorial support.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Clerici.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Fig. S1

MNP labeling: dose–response and incubation-time study. a Relaxometric analysis of labeled cells in the dose–response study shows a decrease in T2 time, due to the presence of iron in the cells, that is proportional to the increase in the amount of iron used (R2 = 0.984). b Analysis of cell viability in the dose–response study by means of the Trypan Blue Exclusion Test shows that MNP labeling influences cell viability only for the highest dose (p < 0.01 vs ctrl). c Relaxometric analysis of labeled cells in the incubation-time study shows a decrease in T2 time, due to the presence of iron in the cells, in relation to the increase in the incubation time. The increase in T2 time at 48 h is probably a consequence of release of iron from dead cells (the dispersed, as opposed to clustered, MNPs in the cytoplasmic vesicles are associated with the formation of a weaker magnetic field, as described in the text [42]). d Analysis of cell viability in the incubation-time study by means of the Trypan Blue Exclusion Test shows that MNP labeling influences cell viability only for the longest incubation time (p < 0.01 vs ctrl) (PDF 73 kb)

Fig. S2

Kinetics of DC migration to popliteal LNs, visualized by MRI and SPECT imaging. a MSME images and b SPECT imaging of MNP-labeled or 111In-labeled DCs, respectively, at popliteal LN level after DC injection into hind limb footpads. The hypointense signal can be detected 4 h after cell injection, and remains detectable at 24 and 48 h. In SPECT images, the dashed lines identify the field of view (FOV) of the SPECT instrument. The light blue arrows identify the injection site, and the dark blue arrows indicate the subiliac LN, where no signal was detected; K = kidneys (PDF 67 kb)

Fig. S3

Kinetics of DC migration to axillary LNs, visualized by MRI and SPECT imaging. a FLASH images of MNP-labeled DCs at accessory axillary LN level after DC injection into forelimb footpads. The hypointense signal can be detected 24 h after cell injection, and is still detectable at 48 h. No iron signal can be observed in the LNs before cell injection (white arrows). b SPECT imaging of 111In-labeled DCs at the level of both axillary LNs after DC injection into forelimb footpads. The hypointense signal can be detected 4 h after cell injection, and is still detectable at 24 h. At 48 h the signal is no longer visible due to radiotracer decay, as can be observed at the level of the injection site. In SPECT images, the dashed lines identify the field of view (FOV) of the SPECT instrument (PDF 81 kb)

Fig. S4

Perl’s staining demonstrates, in the collected LNs, the presence of iron in the cytoplasm of migrated cells. Consecutive optical enlargement of Perl’s staining in LNs showed that labeled cells localized in the cortical and paracortical areas of the lymph nodes. In the control LNs (untreated), we observed no presence of iron (PDF 121 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martelli, C., Borelli, M., Ottobrini, L. et al. In Vivo Imaging of Lymph Node Migration of MNP- and 111In-Labeled Dendritic Cells in a Transgenic Mouse Model of Breast Cancer (MMTV-Ras). Mol Imaging Biol 14, 183–196 (2012). https://doi.org/10.1007/s11307-011-0496-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-011-0496-0

Key words

Navigation