Ahn, I. P., Kim, S., & Lee, Y. H. (2005). Vitamin B-1 functions as an activator of plant disease resistance. Plant Physiology, 138(3), 1505–1515.
Article
CAS
PubMed
PubMed Central
Google Scholar
Albrectsen, B. R., Gardfjell, H., Orians, C. M., Murray, B., & Fritz, R. S. (2004). Slugs, willow seedlings and nutrient fertilization: Intrinsic vigor inversely affects palatability. Oikos, 105(2), 268–278.
Article
Google Scholar
Ali, J. G., & Agrawal, A. A. (2012). Specialist versus generalist insect herbivores and plant defence. Trends in Plant Science, 17(5), 293–302.
Article
CAS
PubMed
Google Scholar
Amiri-Jami, A., Sadeghi-Namaghi, H., Gilbert, F., Moravvej, G., & Asoodeh, A. (2016). On the role of sinigrin (mustard oil) in a tritrophic context: Plant-aphid-aphidophagous hoverfly. Ecological Entomology, 41(2), 138–146.
Article
Google Scholar
Ananieva, K., Ananiev, E. D., Mishev, K., Georgieva, K., Malbeck, J., Kamínek, M., et al. (2007). Methyl jasmonate is a more effective senescence-promoting factor in Cucurbita pepo (zucchini) cotyledons when compared with darkness at the early stage of senescence. Journal of Plant Physiol, 164(9), 1179–1187.
Article
CAS
Google Scholar
Araujo, W. L., Nunes-Nesi, A., Nikoloski, Z., Sweetlove, L. J., & Fernie, A. R. (2012). Metabolic control and regulation of the tricarboxylic acid cycle in photosynthetic and heterotrophic plant tissues. Plant, Cell and Environment, 35(1), 1–21.
Article
PubMed
Google Scholar
Balmer, A., Pastor, V., Gamir, J., Flors, V., & Mauch-Mani, B. (2015). The ‘prime-ome’: Towards a holistic approach to priming. Trends in Plant Science, 20(7), 443–452.
Article
CAS
PubMed
Google Scholar
Balmer, A., Pastor, V., Glauser, G., & Mauch-Mani, B. (2018). Tricarboxylates induce defense priming against bacteria in Arabidopsis thaliana. Frontiers in Plant Science, 9, 1221. https://doi.org/10.3389/fpls.2018.01221.
Article
PubMed
PubMed Central
Google Scholar
Barton, K. E., & Boege, K. (2017). Future directions in the ontogeny of plant defence: Understanding the evolutionary causes and consequences. Ecology Letters, 20(4), 403–411.
Article
PubMed
Google Scholar
Beckers, G. J., & Conrath, U. (2007). Priming for stress resistance: From the lab to the field. Current Opinion in Plant Biology, 10(4), 425–431.
Article
PubMed
Google Scholar
Bekaert, M., Edger, P. P., Hudson, C. M., Pires, J. C., & Conant, G. C. (2012). Metabolic and evolutionary costs of herbivory defence: Systems biology of glucosinolate synthesis. New Phytologist, 196(2), 596–605.
Article
CAS
Google Scholar
Berglund, T., Lindstrom, A., Aghelpasand, H., Stattin, E., & Ohlsson, A. B. (2016). Protection of spruce seedlings against pine weevil attacks by treatment of seeds or seedlings with nicotinamide, nicotinic acid and jasmonic acid. Forestry, 89(2), 127–135.
Article
Google Scholar
Blatt, S. E., Smallegange, R. C., Hess, L., Harvey, J. A., Dicke, M., & van Loon, J. J. A. (2008). Tolerance of Brassica nigra to Pieris brassicae herbivory. Botany, 86(6), 641–648.
Article
Google Scholar
Bolton, M. D. (2009). Primary metabolism and plant defence-fuel for the fire. Molecular Plant-Microbe Interactions, 22(5), 487–497.
Article
CAS
PubMed
Google Scholar
Broekgaarden, C., Voorrips, R. E., Dicke, M., & Vosman, B. (2011). Transcriptional responses of Brassica nigra to feeding by specialist insects of different feeding guilds. Insect Science, 18(3), 259–272.
Article
CAS
Google Scholar
Brown, P. D., Tokuhisa, J. G., Reichelt, M., & Gershenzon, J. (2003). Variation of glucosinolate accumulation among different organs and developmental stages of Arabidopsis thaliana. Phytochemistry, 62(3), 471–481.
Article
CAS
PubMed
Google Scholar
Bruinsma, M., IJdema, H., van Loon, J. J. A., & Dicke, M. (2008). Differential effects of jasmonic acid treatment of Brassica nigra on the attraction of pollinators, parasitoids, and butterflies. Entomologia Experimentalis et Applicata, 128(1), 109–116.
Article
CAS
Google Scholar
Brütting, C., Schafer, M., Vankova, R., Gase, K., Baldwin, I. T., & Meldau, S. (2017). Changes in cytokinins are sufficient to alter developmental patterns of defence metabolites in Nicotiana attenuata. The Plant Journal, 89(1), 15–30.
Article
CAS
PubMed
Google Scholar
Campos, M. L., Yoshida, Y., Major, I. T., et al. (2016). Rewiring of jasmonate and phytochrome B signalling uncouples plant growth-defence tradeoffs. Nature Communications, 7, 12570.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chrétien, L. T. S., David, A., Daikou, E., Boland, W., Gershenzon, J., Giron, D., et al. (2018). Caterpillars induce jasmonates in flowers and alter plant responses to a second attacker. New Phytologist, 217(3), 1279–1291.
Article
CAS
Google Scholar
Chrobok, D., et al. (2016). Dissecting the metabolic role of mitochondria during developmental leaf senescence. Plant Physiology, 172(4), 2132–2153.
Article
CAS
PubMed
PubMed Central
Google Scholar
Clarke, D. B. (2010). Glucosinolates, structures and analysis in food. Analytical Methods, 2(4), 310–325.
Article
CAS
Google Scholar
Consales, F., et al. (2012). Insect oral secretions suppress wound-induced responses in Arabidopsis. Journal of Experimental Botany, 63(2), 727–737.
Article
CAS
PubMed
Google Scholar
D’Auria, J. C., & Gershenzon, J. (2005). The secondary metabolism of Arabidopsis thaliana: Growing like a weed. Current Opinion in Plant Biology, 8(3), 308–316.
Article
CAS
PubMed
Google Scholar
de Vries, J., Evers, J. B., Dicke, M., & Poelman, E. H. (2019). Ecological interactions shape the adaptive value of plant defence: Herbivore attack versus competition for light. Functional Ecology, 33(1), 129–138.
Article
PubMed
Google Scholar
de Vries, J., Evers, J. B., & Poelman, E. H. (2017). Dynamic plant-plant-herbivore interactions govern plant growth-defence integration. Trends in Plant Science, 22(4), 329–337.
Article
CAS
PubMed
Google Scholar
de Vries, J., Poelman, E. H., Anten, N., & Evers, J. B. (2018). Elucidating the interaction between light competition and herbivore feeding patterns using functional-structural plant modelling. Annals of Botany, 121(5), 1019–1031.
Article
PubMed
PubMed Central
Google Scholar
Ding, F., Wang, M., & Zhang, S. (2018). Sedoheptulose-1,7-bisphosphatase is involved in methyl jasmonate- and dark-induced leaf senescence in tomato plants. International Journal of Molecular Sciences, 19(11), 3673. https://doi.org/10.3390/ijms19113673.
CAS
Article
PubMed Central
Google Scholar
Dombrecht, B., et al. (2007). MYC2 differentially modulates diverse jasmonate-dependent functions in Arabidopsis. The Plant Cell, 19(7), 2225–2245.
Article
CAS
PubMed
PubMed Central
Google Scholar
Eisenring, M., Glauser, G., Meissle, M., & Romeis, J. (2018). Differential impact of herbivores from three feeding guilds on systemic secondary metabolite induction, phytohormone levels and plant-mediated herbivore interactions. Journal of Chemical Ecology, 44(12), 1178–1189.
Article
CAS
PubMed
Google Scholar
Erb, M., Meldau, S., & Howe, G. A. (2012). Role of phytohormones in insect-specific plant reactions. Trends in Plant Science, 17(5), 250–259.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fagerstrom, T., Larsson, S., & Tenow, O. (1987). On optimal defence in plants. Functional Ecology, 1(2), 73–81.
Article
Google Scholar
Farmer, E. E., & Ryan, C. A. (1990). Interplant communication: Airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves. Proceedings of the National Academy of Science of United States of America, 87(19), 7713–7716.
Article
CAS
Google Scholar
Farmer, E. E., & Ryan, C. A. (1992). Octadecanoid precursors of jasmonic acid activate the synthesis of wound-inducible proteinase-inhibitors. The Plant Cell, 4(2), 129–134.
Article
CAS
PubMed
PubMed Central
Google Scholar
Firn, R. D., & Jones, C. G. (2009). A Darwinian view of metabolism: Molecular properties determine fitness. Journal of Experimental Botany, 60(3), 719–726.
Article
CAS
PubMed
Google Scholar
Foyer, C. H., Noctor, G., & Hodges, M. (2011). Respiration and nitrogen assimilation: Targeting mitochondria-associated metabolism as a means to enhance nitrogen use efficiency. Journal of Experimental Botany, 62(4), 1467–1482.
Article
CAS
PubMed
Google Scholar
Fritz, V. A., Justen, V. L., Bode, A. M., Schuster, T., & Wang, M. (2010). Glucosinolate enhancement in cabbage induced by jasmonic acid application. HortScience, 45(8), 1188–1191.
Article
Google Scholar
Gachon, C. M., Langlois-Meurinne, M., & Saindrenan, P. (2005). Plant secondary metabolism glycosyltransferases: The emerging functional analysis. Trends in Plant Science, 10(11), 542–549.
Article
CAS
PubMed
Google Scholar
Gardeström, P., Igamberdiev, A. U., & Raghavendra, A. S. (2002). Mitochondrial functions in the light and significance to carbon-nitrogen interactions. In C. H. Foyer & G. Noctor (Eds.), Photosynthetic nitrogen assimilation and associated carbon and respiratory metabolism. Advances in photosynthesis and respiration (Vol. 12, pp. 151–172). Dordrecht: Springer.
Google Scholar
Glauser, G., Grata, E., Dubugnon, L., Rudaz, S., Farmer, E. E., & Wolfender, J. L. (2008). Spatial and temporal dynamics of jasmonate synthesis and accumulation in Arabidopsis in response to wounding. Journal of Biological Chemistry, 283(24), 16400–16407.
Article
CAS
Google Scholar
Gols, R., Roosjen, M., Dijkman, H., & Dicke, M. (2003). Induction of direct and indirect plant responses by jasmonic acid, low spider mite densities, or a combination of jasmonic acid treatment and spider mite infestation. Journal of Chemical Ecology, 29(12), 2651–2666.
Article
CAS
PubMed
Google Scholar
Gullberg, J., Jonsson, P., Nordström, A., Sjöström, M., & Moritz, T. (2004). Design of experiments: An efficient strategy to identify factors influencing extraction and derivatization of Arabidopsis thaliana samples in metabolomic studies with gas chromatography/mass spectrometry. Analytical Biochemistry, 331(2), 283–295.
Article
CAS
PubMed
Google Scholar
Guo, Q., Major, I. T., & Howe, G. A. (2018). Resolution of growth-defence conflict: Mechanistic insights from jasmonate signaling. Current Opinion in Plant Biology, 44, 72–81. https://doi.org/10.1016/j.pbi.2018.02.009.
CAS
Article
PubMed
Google Scholar
Halkier, B., & Gershenzon, J. (2006). Biology and biochemistry of glucosinolates. Annual Review of Plant Biology, 57, 303–333. https://doi.org/10.1146/annurev.arplant.57.032905.105228.
CAS
Article
PubMed
Google Scholar
Hamada, A. M., Fatehi, J., & Jonsson, L. M. V. (2018). Seed treatments with thiamine reduce the performance of generalist and specialist aphids on crop plants. Bulletin of Entomological Research, 108(1), 84–92.
Article
CAS
PubMed
Google Scholar
Havko, N. E., Major, I. T., Jewell, J. B., Attaran, E., Browse, J., & Howe, G. A. (2016). Control of carbon assimilation and partitioning by jasmonate: An accounting of growth-defence tradeoffs. Plants, 5, 7. https://doi.org/10.3390/plants5010007.
CAS
Article
PubMed Central
Google Scholar
Heil, M., & Baldwin, I. T. (2002). Fitness costs of induced resistance: Emerging experimental support for a slippery concept. Trends in Plant Science, 7(2), 61–67.
Article
CAS
PubMed
Google Scholar
Hilker, M., et al. (2016). Priming and memory of stress responses in organisms lacking a nervous system. Biological Reviews, 91(4), 1118–1133.
Article
PubMed
Google Scholar
Huang, H., Liu, B., Liu, L., & Song, S. (2017). Jasmonate action in plant growth and development. Journal of Experimental Botany, 68(6), 1349–1359.
Article
CAS
PubMed
Google Scholar
Hummel, J., Strehmel, N., Selbig, J., Walther, D., & Kopka, J. (2010). Decision tree supported substructure prediction of metabolites from GC–MS profiles. Metabolomics, 6(2), 322–333.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huot, B., Yao, J., Montgomery, B. L., & He, S. Y. (2014). Growth-defence tradeoffs in plants: A balancing act to optimize fitness. Molecular Plant, 7(8), 1267–1287.
Article
CAS
PubMed
PubMed Central
Google Scholar
Igamberdiev, A. U., & Eprintsev, A. T. (2016). Organic acids: The pools of fixed carbon involved in redox regulation and energy balance in higher plants. Frontiers in Plant Science, 7, 1042. https://doi.org/10.3389/fpls.2016.01042.
Article
PubMed
PubMed Central
Google Scholar
Jansen, J. J., Allwood, J. W., Marsden-Edwards, E., van der Putten, W. H., Goodacre, R., & van Dam, N. M. (2009). Metabolomic analysis of the interaction between plants and herbivores. Metabolomics, 5(1), 150–161.
Article
CAS
Google Scholar
Karban, R. (2011). The ecology and evolution of induced resistance against herbivores. Functional Ecology, 25(2), 339–347.
Article
Google Scholar
Kask, K., Kaennaste, A., Talts, E., Copolovici, L., & Niinemets, U. (2016). How specialized volatiles respond to chronic and short-term physiological and shock heat stress in Brassica nigra. Plant, Cell and Environment, 39(9), 2027–2042.
Article
CAS
PubMed
Google Scholar
Khaling, E., Papazian, S., Poelman, E. H., Holopainen, J. K., Albrectsen, B. R., & Blande, J. D. (2015). Ozone affects growth and development of Pieris brassicae on the wild host plant Brassica nigra. Environmental Pollution, 199, 119–129. https://doi.org/10.1016/j.envpol.2015.01.019.
CAS
Article
PubMed
Google Scholar
Klauser, D., et al. (2015). The Arabidopsis Pep-PEPR system is induced by herbivore feeding and contributes to JA-mediated plant defence against herbivory. Journal of Experimental Botany, 66(17), 5327–5336.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lankau, R. A., & Strauss, S. Y. (2007). Mutual feedbacks maintain both genetic and species diversity in a plant community. Science, 317(5844), 1561–1563.
Article
CAS
PubMed
Google Scholar
Law, S. R., et al. (2018). Darkened leaves use different metabolic strategies for senescence and survival. Plant Physiology, 177(1), 132–150.
CAS
PubMed
PubMed Central
Google Scholar
Le Roy, J., Huss, B., Creach, A., Hawkins, S., & Neutelings, G. (2016). Glycosylation is a major regulator of phenylpropanoid availability and biological activity in plants. Frontiers in Plant Science, 7, 735. https://doi.org/10.3389/fpls.2016.00735.
Article
PubMed
PubMed Central
Google Scholar
Leo, F., Bonadé-Bottino, M., Ceci, L., Gallerani, R., & Jouanin, L. (2001). Effects of a mustard trypsin inhibitor expressed in different plants on three lepidopteran pests. Insect Biochemistry and Molecular Biology, 31(6–7), 593–602.
Article
PubMed
Google Scholar
Li, Z., Peng, J., Wen, X., & Guo, H. (2013). ETHYLENE-INSENSITIVE3 is a senescence-associated gene that accelerates age-dependent leaf senescence by directly repressing miR164 transcription in Arabidopsis. The Plant Cell, 25(9), 3311–3328.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li, C., Wang, P., Menzies, N. W., Lombi, E., & Kopittke, P. M. (2018). Effects of methyl jasmonate on plant growth and leaf properties. Journal of Plant Nutrition and Soil Science, 181(3), 409–418.
Article
CAS
Google Scholar
Lin, L. Z., Sun, J., Chen, P., & Harnly, J. (2011). UHPLC-PDA-ESI/HRMS/MS(n) analysis of anthocyanins, flavonol glycosides, and hydroxycinnamic acid derivatives in red mustard greens (Brassica juncea Coss variety). Journal of Agricultural and Food Chemistry, 59(22), 12059–12072.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lortzing, T., & Steppuhn, A. (2016). Jasmonate signalling in plants shapes plant-insect interaction ecology. Current Opinion in Insect Science, 14, 32–39. https://doi.org/10.1016/j.cois.2016.01.002.
Article
PubMed
Google Scholar
Lucas-Barbosa, D., Sun, P., Hakman, A., van Beek, T. A., van Loon, J. A. J., & Dicke, M. (2016). Visual and odour cues: Plant responses to pollination and herbivory affect the behaviour of flower visitors. Functional Ecology, 30(3), 431–441.
Article
Google Scholar
Lucas-Barbosa, D., van Loon, J. A. J., Gols, R., van Beek, T. A., & Dicke, M. (2013). Reproductive escape: Annual plant responds to butterfly eggs by accelerating seed production. Functional Ecology, 27, 245–254.
Article
Google Scholar
Maag, D., Erb, M., & Glauser, G. (2015). Metabolomics in plant–herbivore interactions: Challenges and applications. Entomologia Experimental et Applicata, 157(1), 18–29.
Article
Google Scholar
Machado, R. A. R., Baldwin, I. T., & Erb, M. (2017). Herbivory-induced jasmonates constrain plant sugar accumulation and growth by antagonizing gibberellin signaling and not by promoting secondary metabolite production. New Phytologist, 215(2), 803–812.
Article
CAS
Google Scholar
Martinez-Medina, A., et al. (2016). Recognizing plant defence priming. Trends in Plant Science, 21(10), 818–822.
Article
CAS
PubMed
Google Scholar
Mattiacci, L., Dicke, M., & Posthumus, M. A. (1995). beta-Glucosidase: An elicitor of herbivore-induced plant odor that attracts host-searching parasitic wasps. Proceedings of the National Academy of Science of United States of America, 92(6), 2036–2040.
Article
CAS
Google Scholar
Mauch-Mani, B., Baccelli, I., Luna, E., & Flors, V. (2017). Defense priming: An adaptive part of induced resistance. Annual Review of Plant Biology, 68, 485–512. https://doi.org/10.1146/annurev-arplant-042916-041132.
CAS
Article
PubMed
Google Scholar
McCall, A. C., & Fordyce, J. A. (2010). Can optimal defence theory be used to predict the distribution of plant chemical defences? Journal of Ecology, 98(5), 985–992.
Article
Google Scholar
Mckey, D. (1974). Adaptive patterns in alkaloid physiology. The American Naturalist, 108(961), 305–320.
Article
Google Scholar
Meldau, S., Erb, M., & Baldwin, I. T. (2012). Defence on demand: Mechanisms behind optimal defence patterns. Annals of Botany, 110(8), 1503–1514.
Article
CAS
PubMed
PubMed Central
Google Scholar
Milkowski, C., & Strack, D. (2010). Sinapate esters in brassicaceous plants: Biochemistry, molecular biology, evolution and metabolic engineering. Planta, 232(1), 19–35.
Article
CAS
PubMed
Google Scholar
Moghe, G. D., & Last, R. L. (2015). Something old, something new: Conserved enzymes and the evolution of novelty in plant specialized metabolism. Plant Physiology, 169(3), 1512–1523.
CAS
PubMed
PubMed Central
Google Scholar
Moore, B., Andrew, R. L., Kulheim, C., & Foley, W. J. (2014). Explaining intraspecific diversity in plant secondary metabolites in an ecological context. New Phytologist, 201(3), 733–750.
Article
Google Scholar
Morrisey, J. P. (2009). Biological activity of defence-related plant secondary Metabolites. In A. E. Osbourn & V. Lanzotti (Eds.), Plant-derived natural products: Synthesis, function, and application pp. 269–279. Springer.
Mousavi, S. A. R., Chauvin, A., Pascaud, F., Kellenberger, S., & Farmer, E. E. (2013). GLUTAMATE RECEPTOR-LIKE genes mediate leaf-to-leaf wound signalling. Nature, 500(7463), 422–426.
Article
CAS
PubMed
Google Scholar
Ochoa-López, S., Villamil, N., Zedillo-Avelleyra, P., & Boege, K. (2015). Plant defence as a complex and changing phenotype throughout ontogeny. Annals of Botany, 116(5), 797–806.
Article
PubMed
PubMed Central
Google Scholar
Onkokesung, N., Reichelt, M., van Doorn, A., Schuurink, R. C., van Loon, J. J., & Dicke, M. (2014). Modulation of flavonoid metabolites in Arabidopsis thaliana through overexpression of the MYB75 transcription factor: Role of kaempferol-3,7-dirhamnoside in resistance to the specialist insect herbivore Pieris brassicae. Journal of Experimental Botany, 65(8), 2203–2217.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pantin, F., Simonneau, T., & Muller, B. (2012). Coming of leaf age: Control of growth by hydraulics and metabolics during leaf ontogeny. New Phytologist, 196(2), 349–366.
Article
Google Scholar
Papazian, S., et al. (2016). Central metabolic responses to ozone and herbivory affect photosynthesis and stomatal closure. Plant Physiology, 172(3), 2057–2078.
Article
CAS
PubMed
PubMed Central
Google Scholar
Parsons, H. M., Ekman, D. R., Collette, T. W., & Viant, M. R. (2009). Spectral relative standard deviation: A practical benchmark in metabolomics. Analyst, 134(3), 478–485. https://doi.org/10.1039/b808986h.
CAS
Article
PubMed
Google Scholar
Pastor, V., Balmer, A., Gamir, J., Flors, V., & Mauch-Mani, B. (2014). Preparing to fight back: Generation and storage of priming compounds. Frontiers in Plant Science, 24, 295. https://doi.org/10.3389/fpls.2014.00295.
Article
Google Scholar
Peng, L., et al. (2016). Comparative metabolomics of the interaction between rice and the brown planthopper. Metabolomics, 12(8), 132.
Article
CAS
Google Scholar
Poelman, E. H., Van Loon, J. J. A., Van Dam, N. M., Vet, L. E. M., & Dicke, M. (2010). Herbivore-induced plant responses in Brassica oleracea prevail over effects of constitutive resistance and result in enhanced herbivore attack. Ecological Entomology, 35(2), 240–247.
Article
Google Scholar
Ponzio, C., Papazian, S., Albrectsen, B. R., Dicke, M., & Gols, R. (2017). Dual herbivore attack and herbivore density affect metabolic profiles of Brassica nigra leaves. Plant, Cell and Environment, 40(8), 1356–1367.
Article
CAS
PubMed
Google Scholar
Quintero, C., Lampert, E. C., & Bowers, D. M. (2014). Time is of the essence: Direct and indirect effects of plant ontogenetic trajectories on higher trophic levels. Ecology, 95(9), 2589–2602.
Article
Google Scholar
Rask, L., Andreasson, E., Ekbom, B., Eriksson, S., Pontoppidan, B., & Meijer, J. (2000). Myrosinase: Gene family evolution and herbivore defence in Brassicaceae. Plant Molecular Biology, 42(1), 93–113.
Article
CAS
PubMed
Google Scholar
Reymond, P., Bodenhausen, N., van Poecke, R. M. P., Krishnamurthy, V., Dicke, M., & Farmer, E. E. (2004). A conserved transcript pattern in response to a specialist and a generalist herbivore. The Plant Cell, 16(11), 3132–3147.
Article
CAS
PubMed
PubMed Central
Google Scholar
Reymond, P., Weber, H., Damond, M., & Farmer, E. E. (2000). Differential gene expression in response to mechanical wounding and insect feeding in Arabidopsis. The Plant Cell, 12(5), 707–720.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rothman, K. J. (1990). No adjustments are needed for multiple comparisons. Epidemiology, 1, 43–46.
Article
CAS
PubMed
Google Scholar
Sampedro, L., Moreira, X., & Zas, R. (2011). Resistance and response of Pinus pinaster seedlings to Hylobius abietis after induction with methyl jasmonate. Plant Ecology, 212(3), 397–401.
Article
Google Scholar
Schwachtje, J., & Baldwin, I. T. (2008). Why does herbivore attack reconfigure primary metabolism? Plant Physiology, 146(3), 845–851.
Article
CAS
PubMed
PubMed Central
Google Scholar
Smallegange, R. C., van Loon, J. J. A., Blatt, S. E., Harvey, J. A., Agerbirk, N., & Dicke, M. (2007). Flower vs. leaf feeding by Pieris brassicae: Glucosinolaterich flower tissues are preferred and sustain higher growth rate. Journal of Chemical Ecology, 33(10), 1831–1844.
Article
CAS
Google Scholar
Song, S., Huang, H., Gao, H., et al. (2014). Interaction between MYC2 and ETHYLENE INSENSITIVE3 modulates antagonism between jasmonate and ethylene signaling in Arabidopsis. The Plant Cell, 26(1), 263–279.
Article
CAS
PubMed
PubMed Central
Google Scholar
Strehmel, N., Hummel, J., Erban, A., Strassburg, K., & Kopka, J. (2008). Retention index thresholds for compound matching in GC–MS metabolite profiling. Journal of Chromatography B, 871(2), 182–190.
Article
CAS
Google Scholar
Sweetlove, L. J., Beard, K. F., & Nunes-Nesi, A. (2010). Not just a circle: Flux modes in the plant TCA cycle. Trends in Plant Science, 15(8), 462–470.
Article
CAS
PubMed
Google Scholar
Townsley, B. T., & Sinha, N. R. (2012). A new development: Evolving concepts in leaf ontogeny. Annual Review of Plant Biology, 63, 535–562. https://doi.org/10.1146/annurev-arplant-042811-105524.
CAS
Article
PubMed
Google Scholar
Traw, M. B., & Feeny, P. (2008). Glucosinolates and trichomes track tissue value in two sympatric mustards. Ecology, 89(3), 763–772.
Article
PubMed
Google Scholar
Tschoep, H., et al. (2009). Adjustment of growth and central metabolism to a mild but sustained nitrogen limitation in Arabidopsis. Plant, Cell and Environment, 32(3), 300–318.
Article
CAS
PubMed
Google Scholar
van Dam, N. M., & Oomen, M. W. A. T. (2008). Root and shoot jasmonic acid applications differentially affect leaf chemistry and herbivore growth. Plant Signaling and Behavior, 3(2), 91–98.
Article
PubMed
PubMed Central
Google Scholar
Wasternack, C., & Song, S. (2017). Jasmonates: Biosynthesis, metabolism, and signaling by proteins activating and repressing transcription. Journal of Experimental Botany, 68(6), 1303–1321.
CAS
PubMed
Google Scholar
Weng, J.-K. (2014). The evolutionary paths towards complexity: A metabolic perspective. New Phytologist, 201(4), 1141–1149.
Article
Google Scholar
Winde, I., & Wittstock, U. (2011). Insect herbivore counteradaptations to the plant glucosinolate-myrosinase system. Phytochemistry, 72(13), 1566–1575.
Article
CAS
PubMed
Google Scholar
Yi, G. E., Ahk, R., Yang, K., Park, J. I., Hwang, B. H., & Nou, I. S. (2016). Exogenous methyl jasmonate and salicylic acid induce subspecies-specific patterns of glucosinolate accumulation and gene expression in Brassica oleracea L. Molecules, 21, 1417. https://doi.org/10.3390/molecules21101417.
CAS
Article
PubMed Central
Google Scholar
Zang, Y. X., et al. (2015). Glucosinolate enhancement in leaves and roots of pak choi (Brassica rapa ssp. chinensis) by methyl jasmonate. Horticulture, Environment, and Biotechnology, 56(6), 830–840.
Article
CAS
Google Scholar
Zhang, Y., & Turner, J. G. (2008). Wound-induced endogenous jasmonates stunt plant growth by inhibiting mitosis. PLoS ONE, 3(11), e3699. https://doi.org/10.1371/journal.pone.0003699.
CAS
Article
PubMed
PubMed Central
Google Scholar
Zhou, S., Lou, Y. R., Tzin, V., & Jander, G. (2015). Alteration of plant primary metabolism in response to insect herbivory. Plant Physiology, 169(3), 1488–1498.
CAS
PubMed
PubMed Central
Google Scholar