Skip to main content
Log in

Sinapate esters in brassicaceous plants: biochemistry, molecular biology, evolution and metabolic engineering

  • Review
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Brassicaceous plants are characterized by a pronounced metabolic flux toward sinapate, produced by the shikimate/phenylpropanoid pathway, which is converted into a broad spectrum of O-ester conjugates. The abundant sinapate esters in Brassica napus and Arabidopsis thaliana reflect a well-known metabolic network, including UDP-glucose:sinapate glucosyltransferase (SGT), sinapoylglucose:choline sinapoyltransferase (SCT), sinapoylglucose:l-malate sinapoyltransferase (SMT) and sinapoylcholine (sinapine) esterase (SCE). 1-O-Sinapoylglucose, produced by SGT during seed development, is converted to sinapine by SCT and hydrolyzed by SCE in germinating seeds. The released sinapate feeds via sinapoylglucose into the biosynthesis of sinapoylmalate in the seedlings catalyzed by SMT. Sinapoylmalate is involved in protecting the leaves against the deleterious effects of UV-B radiation. Sinapine might function as storage vehicle for ready supply of choline for phosphatidylcholine biosynthesis in young seedlings. The antinutritive character of sinapine and related sinapate esters hamper the use of the valuable seed protein of the oilseed crop B. napus for animal feed and human nutrition. Due to limited variation in seed sinapine content within the assortment of B. napus cultivars, low sinapine lines cannot be generated by conventional breeding giving rise to genetic engineering of sinapate ester metabolism as a promising means. In this article we review the progress made throughout the last decade in identification of genes involved in sinapate ester metabolism and characterization of the encoded enzymes. Based on gene structures and enzyme recruitment, evolution of sinapate ester metabolism is discussed. Strategies of targeted metabolic engineering, designed to generate low-sinapate ester lines of B. napus, are evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

SCE:

Sinapoylcholine (sinapine) esterase

SCPL:

Serine carboxy peptidase-like

SCT:

Sinapoylglucose:choline sinapoyltransferase

SGT:

UDP-glucose:sinapate glucosyltransferase

SMT:

Sinapoylglucose:l-malate sinapoyltransferase

UGT:

UDP-dependent glycosyltransferase

References

  • Akoh CC, Lee GC, Liaw YC, Huang T-H, Shaw J-F (2004) GDSL family of serine esterases/lipases. Prog Lipid Res 43:534–552

    Article  PubMed  CAS  Google Scholar 

  • Bairoch A (1991) Prosite: a dictionary of sites and patterns in proteins. Nucleic Acids Res 19:2241–2245

    PubMed  CAS  Google Scholar 

  • Baumert A, Milkowski C, Schmidt J, Nimtz M, Wray V, Strack D (2005) Formation of a complex pattern of sinapate esters in Brassica napus seeds, catalysed by enzymes of a serine carboxypeptidase-like acyltransferase family. Phytochemistry 66:1334–1345

    Article  PubMed  CAS  Google Scholar 

  • Bell JM (1993) Factors affecting the nutritional value of canola meal: a review. Can J Anim Sci 73:679–697

    Article  CAS  Google Scholar 

  • Besseau S, Hoffmann L, Geoffroy P, Lapierre C, Pollet B, Legrand M (2007) Flavonoid accumulation in Arabidopsis repressed in lignin synthesis affects auxin transport and plant growth. Plant Cell 19:148–162

    Article  PubMed  CAS  Google Scholar 

  • Bhinu VS, Schäfer UA, Li R, Huang J, Hannoufa A (2009) Targeted modulation of sinapine biosynthesis pathway for seed quality improvement in Brassica napus. Transgenic Res 18:31–44

    Article  PubMed  CAS  Google Scholar 

  • Blair R, Reichert RD (1984) Carbohydrate and phenolic constituents in a comprehensive rang of rapeseed and canola fractions: nutritional significance for animals. J Sci Food Agric 35:29–35

    Article  PubMed  CAS  Google Scholar 

  • Blusztajn JK (1998) A vital amine choline. Science 281:794–795

    Article  PubMed  CAS  Google Scholar 

  • Bokern M, Strack D (1988) Synthesis of hydroxycinnamic acid esters of betacyanins via 1-O-acylglucosides of hydroxycinnamic acids by protein preparations from cell suspension cultures of Chenopodium rubrum and petals of Lampranthus sociorum. Planta 174:101–105

    Article  CAS  Google Scholar 

  • Bokern M, Heuer S, Strack D (1991) Hydroxycinnamic acid transferases in the biosynthesis of acylated betacyanins: purification and characterization from cell cultures of Chenopodium rubrum and occurrence in some other members of the Caryophyllales. Bot Acta 105:146–151

    Google Scholar 

  • Bos C, Airinei G, Mariotti F, Benamouzig R, Berot S, Evrard J, Tome D, Gaudichon C (2007) Rapeseed protein exhibit a poor digestibility but very high metabolic utilization in humans. In: Proceedings of the 12th international rapeseed congress, Wuhan, China

  • Böttcher C, von Roepenack-Lahaye E, Schmidt J, Schmotz C, Neumann S, Scheel D, Clemens S (2008) Metabolome analysis of biosynthetic mutants reveals a diversity of metabolic changes and allows identification of a large number of new compounds in Arabidopsis. Plant Physiol 147:2107–2120

    Article  PubMed  CAS  Google Scholar 

  • Bouchereau AJ, Hamelin J, Lamour I, Renard M, Larher F (1991) Distribution of sinapine and related compounds in seeds of Brassica and allied genera. Phytochemistry 30:1873–1881

    Article  CAS  Google Scholar 

  • Bouchereau AJ, Hamelin J, Renard M, Larher F (1992) Structural changes in sinapic acid conjugates during development of rape. Plant Physiol Biochem 30:467–475

    CAS  Google Scholar 

  • Bowles D, Lim E-K, Poppenberger B, Vaistij FE (2006) Glycosyltransferases of lipophilic small molecules. Annu Rev Plant Biol 57:567–597

    Article  PubMed  CAS  Google Scholar 

  • Campbell LD, Eggum BO, Jacobsen I (1981) Biological value, amino acid availability and true metabolizable energy of low-glucosinolate rapeseed meal (canola) determined with rats and/or roosters. Nutr Rep Int 24:791–797

    CAS  Google Scholar 

  • Chapple CCS, Vogt T, Ellis BE, Somerville CR (1992) An Arabidopsis mutant defective in the general phenylpropanoid pathway. Plant Cell 4:1413–1424

    Article  PubMed  CAS  Google Scholar 

  • Chuang C-F, Meyerowitz EM (2000) Specific and heritable genetic interference by double-stranded RNA in Arabidopsis thaliana. Proc Natl Acad Sci USA 97:4985–4990

    Article  PubMed  CAS  Google Scholar 

  • Clauß K, Baumert A, Nimtz M, Milkowski C, Strack D (2008) Role of a GDSL lipase-like protein as sinapine esterase in Brassicaceae. Plant J 53:802–813

    Article  PubMed  CAS  Google Scholar 

  • Coutinho PM, Henrissat B (1999) Carbohydrate-active enzymes server at URL: http://afmb.cnrs-mrs.fr/CAZY/

  • D’Auria JC, Gershenzon J (2005) The secondary metabolism of Arabidopsis thaliana: growing like a weed. Curr Opin Plant Biol 8:308–316

    Article  PubMed  CAS  Google Scholar 

  • Dixon RA (2005) Engineering of plant natural product pathways. Curr Opin Plant Biol 8:329–336

    Article  PubMed  CAS  Google Scholar 

  • Dodson G, Wlodawer A (1998) Catalytic triads and their relatives. Trends Biochem Sci 23:347–352

    Article  PubMed  CAS  Google Scholar 

  • Duarte JM, Cui L, Wall PK, Zhang Q, Zhang X, Leebens-Mack J, Ma H, Altmann N, de Pamphilis CW (2006) Expression pattern shifts following duplication indicative of subfunctionalization and neofunctionalization in regulatory genes of Arabidopsis. Mol Biol Evol 23:469–478

    Article  PubMed  CAS  Google Scholar 

  • Emmert JL, Baker DH (1997) A chick bioassay approach for determining the bioavailability of choline, concentration in normal and overheated soybean meal, canola meal and peanut meal. J Nutr 127:745–752

    PubMed  CAS  Google Scholar 

  • Endrizzi JA, Breddam K, Remington SJ (1994) 2.8-Å structure of yeast serine carboxypeptidase. Biochemistry 33:11106–11120

    Article  PubMed  CAS  Google Scholar 

  • Franke R, Humphreys JM, Hemm MR, Denault JW, Ruegger MO, Cusumano JC, Chapple C (2002) The Arabidopsis REF8 gene encodes the 3-hydroxylase of phenylpropanoid metabolism. Plant J 30:33–45

    Article  PubMed  CAS  Google Scholar 

  • Fraser CM, Rider LW, Chapple C (2005) An expression and bioinformatics analysis of the Arabidopsis serine carboxypeptidase-like gene family. Plant Physiol 138:1136–1148

    Article  PubMed  CAS  Google Scholar 

  • Fraser CM, Thompson MG, Shirley AM, Ralph J, Schoenherr JA, Sinlapadech T, Hall MC, Chapple C (2007) Related Arabidopsis serine carboxypeptidase-like sinapoylglucose acyltransferases display distinct but overlapping substrate specificities. Plant Physiol 144:1986–1999

    Article  PubMed  CAS  Google Scholar 

  • Fridman E, Pichersky E (2005) Metabolomics, genomics, proteomics, and the identification of enzymes and their substrates and products. Curr Opin Plant Biol 8:242–248

    Article  PubMed  CAS  Google Scholar 

  • Fujiwara H, Tanaka Y, Yonekura-Sakakibara K, Fukuchi-Mizutani M, Nakao M, Fukui Y, Yamaguchi M, Ashikari T, Kusumi T (1998) cDNA cloning, gene expression and subcellular localization of anthocyanin 5-aromatic acyltransferase from Gentiana triflora. Plant J 16:421–431

    Article  PubMed  CAS  Google Scholar 

  • Gadamer J (1897) Über die Bestandteile des schwarzen und weissen Senfsamens. Arch Pharm 235:44–114

    Article  CAS  Google Scholar 

  • Gläßgen WE, Seitz HU (1992) Acylation of anthocyanins with hydroxycinnamic acids via 1-O-acylglucosides by protein preparations from cell cultures of Daucus carota L. Planta 186:582–585

    Article  Google Scholar 

  • Goujon T, Sibout R, Pollet B, Maba B, Nussaume L, Bechtold N, Lu F, Ralph J, Mila I, Barrière Y, Lapierre C, Jouanin L (2003) A new Arabidopsis thaliana mutant deficient in the expression of O-methyltransferase impacts lignins and sinapoyl esters. Plant Mol Biol 51:973–989

    Article  PubMed  CAS  Google Scholar 

  • Hain R, Reif HJ, Krause E, Langebartels R, Kindl H, Vornam B, Wiese W, Schmelzer E, Schreier PH, Stöcker RH, Stenzel K (1993) Disease resistance results from foreign phytoalexin expression in a novel plant. Nature 361:153–156

    Article  PubMed  CAS  Google Scholar 

  • Hajduch M, Casteel JE, Hurrelmeyer KE, Song Z, Agrawal GK, Thelen JJ (2006) Proteomic analysis of seed filling in Brassica napus. Developmental characterization of metabolic isozymes using high-resolution two-dimensional gel electrophoresis. Plant Physiol 141:32–46

    Article  PubMed  CAS  Google Scholar 

  • Hans J, Brandt W, Vogt T (2004) Site-directed mutagenesis and protein 3D-homology modelling suggest a catalytic mechanism for UDP-glucose dependent betanidin 5-O-glucosyltransferase from Dorotheanthus bellidiformis. Plant J 39:319–333

    Article  PubMed  CAS  Google Scholar 

  • Hartmann T, Kutchan TM, Strack D (2005) Evolution of metabolic diversity. Phytochemistry 66:1198–1199

    Article  PubMed  CAS  Google Scholar 

  • Hause B, Meyer K, Viitanen PV, Chapple C, Strack D (2002) Immunolocalization of 1-O-sinapoylglucose:malate sinapoyltransferase in Arabidopsis thaliana. Planta 215:26–32

    Article  PubMed  CAS  Google Scholar 

  • Henry Fils M, Garot J (1825) Acide sulfo-sinapique. J Pharm 11:473–474

    Google Scholar 

  • Herrmann KM, Weaver LM (1999) The shikimate pathway. Annu Rev Plant Physiol Plant Mol Biol 50:473–503

    Article  PubMed  CAS  Google Scholar 

  • Honda T, Tatsuzawa F, Kobayashi N, Kasai H, Nagumo S, Shigihara A, Saito N (2005) Acylated anthocyanins from the violet-blue flowers of Orychophragonus violaceus. Phytochemistry 66:1844–1851

    Article  PubMed  CAS  Google Scholar 

  • Hösel W (1981) Glycosylation and glycosidases. In: Stumpf PK, Conn EE (eds) The biochemistry of plant. Academic Press, New York, pp 725–753

    Google Scholar 

  • Hrazdina G, Iredala H, Mattick LR (1977) Anthocyanin composition of Brassica oleracea cv. Red Danish. Phytochemistry 16:297–299

    Article  CAS  Google Scholar 

  • Huang J, Hirji R, Adam L, Rozwadowski KL, Hammerlindl JK, Keller WA, Selvaraj G (2000) Genetic engineering of glycinebetaine production toward enhancing stress tolerance in plants: metabolic limitations. Plant Physiol 122:747–756

    Article  PubMed  CAS  Google Scholar 

  • Huang YT, Liaw YC, Gorbatyuk VY, Huang TH (2001) Backbone dynamics of Escherichia coli thioesterase/protease I: evidence of a flexible active-site environment for a serine protease. J Mol Biol 307:1075–1090

    Article  PubMed  CAS  Google Scholar 

  • Huang J, Rozwadowski K, Bhinu VS, Schäfer U, Hannoufa A (2008) Manipulation of sinapine, choline and betaine accumulation in Arabidopsis seed: towards improving the nutritional value of the meal and enhancing the seedling performance under environmental stresses in oilseed crops. Plant Physiol Biochem 46:647–654

    Article  PubMed  CAS  Google Scholar 

  • Hughes J, Hughes MA (1994) Multiple secondary plant product UDP-glucose glucosyltransferase genes expressed in cassava. DNA Seq 5:41–49

    PubMed  CAS  Google Scholar 

  • Humphreys JM, Hemm MR, Chapple C (1999) New routes for lignin biosynthesis defined by biochemical characterization of recombinant ferulate 5-hydroxylase, a multi-functional cytochrome P450-dependent monooxygenase. Proc Natl Acad Sci USA 96:10045–10050

    Article  PubMed  CAS  Google Scholar 

  • Hundle BS, O’Brien DA, Alberti M, Beyer P, Hearst JE (1992) Functional expression of zeaxanthin glucosyltransferase from Erwinia herbicola and a proposed uridine-diphosphate binding site. Proc Natl Acad Sci USA 89:9321–9325

    Article  PubMed  CAS  Google Scholar 

  • Hüsken A, Baumert A, Strack D, Becker HC, Möllers C, Milkowski C (2005a) Reduction of sinapate ester content in transgenic oilseed rape (Brassica napus) by dsRNAi-based suppression of BnSGT1 gene expression. Mol Breed 16:127–138

    Article  CAS  Google Scholar 

  • Hüsken A, Baumert A, Milkowski C, Becker HC, Strack D, Möllers C (2005b) Resveratrol glucoside (piceid) synthesis in seeds of transgenic oilseed rape (Brassica napus L.). Theor Appl Genet 111:1553–1562

    Article  PubMed  CAS  Google Scholar 

  • Jang M, Cai L, Udeani GO, Slowing KV, Thomas CF, Beecher CWW, Fong HHS, Farnswoth NR, Kinghorn AD, Metha RG, Moon RC, Pezzuto JM (1997) Cancer chemopreventive activity of piceid, a natural product derived from grapes. Science 275:218–220

    Article  PubMed  CAS  Google Scholar 

  • Jolivet Y, Larher F, Hamelin J (1982) Osmoregulation in halophytic higher plants: the protective effect of glycinebetaine against the heat destabilization of membranes. Plant Sci Lett 25:193–201

    Article  CAS  Google Scholar 

  • Jolivet Y, Hamelin J, Larher F (1983) Osmoregulation in halophytic higher plants: the protective effects of glycinebetaine and other related solutes against the oxalate destabilization of membranes in beet root cells. Z Pflanzenphysiol 109S:171–180

    Google Scholar 

  • Kerber E, Buchloh G (1980) Der Sinapingehalt in Cruciferensamen. Angew Bot 54:47–54

    CAS  Google Scholar 

  • Kleczkowski K, Schell J (1995) Phytohormone conjugates: nature and function. CRC Crit Rev Plant Sci 14:283–298

    Article  CAS  Google Scholar 

  • Kowalczyk S, Jakubowska A, Zielinska E, Bandurski RS (2003) Bifunctional indole-3-acetyl transferase catalyses synthesis and hydrolysis of indole-3-acetyl-myo-inositol in immature endosperm of Zea mays. Physiol Plant 119:165–174

    Article  CAS  Google Scholar 

  • Kozlowska H, Naczk M, Shahidi F, Zadernowski R (1990) Phenolic acids and tannins in rapeseed and canola. In: Shahidi F (ed) Canola and rapeseed. Production, chemistry, nutrition and processing technology. Van Nostrand Reinhold, New York, pp 193–210

    Google Scholar 

  • Krähling K, Röbbelen G, Thies W (1990) Genetic variation of the content of sinapoyl esters in seeds of rape, B. napus. Plant Breeding 106:254–257

    Article  Google Scholar 

  • Krall JP, Edwards GE, Andreo CS (1989) Protection of pyruvate, Pi dikinase from maize against cold lability by compatible solutes. Plant Physiol 89:280–285

    Article  PubMed  CAS  Google Scholar 

  • Lagercrantz U, Lydiate DJ (1996) Comparative genome mapping in Brassica. Genetics 144:1903–1910

    PubMed  CAS  Google Scholar 

  • Landry LG, Chapple CCS, Last RL (1995) Arabidopsis mutants lacking phenolic sunscreens exhibit enhanced ultraviolet-B injury and oxidative damage. Plant Physiol 109:115–1166

    Article  Google Scholar 

  • Lanot A, Hodge D, Jackson RG, George GL, Elias L, Lim EK, Vaistij FE, Bowles DJ (2006) The glucosyltransferase UGT72E2 is responsible for monolignol 4-O-glucoside production in Arabidopsis thaliana. Plant J 48:286–295

    Article  PubMed  CAS  Google Scholar 

  • Lanot A, Hodge D, Lim EK, Vaistij FE, Bowles DJ (2008) Redirection of flux through the phenylpropanoid pathway by increased glucosylation of soluble intermediates. Planta 228:609–616

    Article  PubMed  CAS  Google Scholar 

  • Lawrence RJ, Pikaard CS (2003) Transgene-induced RNA interference: a strategy for overcoming gene redundancy in polyploids to generate loss-of-function mutations. Plant J 36:114–121

    Article  PubMed  CAS  Google Scholar 

  • Lee YL, Chen JC, Shaw JF (1997) The thioesterase I of Escherichia coli has arylesterase activity and shows stereospecificity for protease substrates. Biochem Biophys Res Commun 231:452–456

    Article  PubMed  CAS  Google Scholar 

  • Lehfeldt C, Shirley AM, Meyer K, Ruegger MO, Cusumano JC, Viitanen PV, Strack D, Chapple C (2000) Cloning of the SNG1 gene of Arabidopsis reveals a role for a serine carboxypeptidase-like protein as an acyltransferase in secondary metabolism. Plant Cell 12:1295–1306

    Article  PubMed  CAS  Google Scholar 

  • Li AX, Steffens JC (2000) An acyltransferase catalyzing the formation of diacylglucose is a serine carboxypeptidase-like protein. Proc Natl Acad Sci USA 97:6902–6907

    Article  PubMed  CAS  Google Scholar 

  • Li X, Bergelson J, Chapple C (2010) The ARABIDOPSIS accession Pna-10 is a naturally occurring sng1 deletion mutant. Mol Plant 3:91–100

    Article  PubMed  CAS  Google Scholar 

  • Liao D-I, Breddam K, Sweet RM, Bullock T, Remington SJ (1992) Refined atomic model of wheat serine carboxypeptidaseII at 2.2-Å resolution. Biochemistry 31:9796–9812

    Article  PubMed  CAS  Google Scholar 

  • Lim E-K, Bowles DJ (2004) A class of plant glycosyltransferases involved in cellular homeostasis. EMBO J 23:2915–2922

    Article  PubMed  CAS  Google Scholar 

  • Lim E-K, Li Y, Parr A, Jackson R, Ashford DA, Bowles DJ (2001) Identification of glucosyltransferase genes involved in sinapate metabolism and lignin synthesis in Arabidopsis. J Biol Chem 276:4344–4349

    Article  PubMed  CAS  Google Scholar 

  • Lim E-K, Doucet CJ, Li Y, Elias L, Worrall D, Spencer SP, Ross J, Bowles DJ (2002) The activity of Arabidopsis glycosyltransferases towards salicylic acid, 4-hydroxybenzoic acid, and other benzoates. J Biol Chem 277:586–592

    Article  PubMed  CAS  Google Scholar 

  • Lim E-K, Baldauf S, Li Y, Elias L, Worrall D, Spencer SP, Jackson RG, Taguchi G, Ross J, Bowles DJ (2003) Evolution of substrate recognition across a multigene family of glycosyltransferases in Arabidopsis. Glycobiology 13:139–145

    Article  PubMed  CAS  Google Scholar 

  • Lim E-K, Jackson RG, Bowles DJ (2005) Identification and characterisation of Arabidopsis glycosyltransferases capable of glucosylating coniferyl aldehyde and sinapyl aldehyde. FEBS Lett 579:2802–2806

    Article  PubMed  CAS  Google Scholar 

  • Liu Q, Singh PS, Green AG (2002) High-stearic and high oleic cottonseed oils produced by hairpin RNA-mediated posttranscriptional gene-silencing. Plant Physiol 129:1732–1743

    Article  PubMed  CAS  Google Scholar 

  • Lorenzen M, Racicot V, Strack D, Chapple C (1996) Sinapic acid ester metabolism in wild type and a sinapoylglucose-accumulating mutant of Arabidopsis. Plant Physiol 112:1625–1630

    Article  PubMed  CAS  Google Scholar 

  • Loutre C, Dixon DP, Brazier M, Slater M, Cole DJ, Edwards R (2003) Isolation of a glucosyltransferase from Arabidopsis thaliana active in the metabolism of the persistent pollutant 3,4-dichloroaniline. Plant J 34:485–493

    Article  PubMed  CAS  Google Scholar 

  • Luo J, Nishiyama Y, Fuell C, Taguchi G, Elliott K, Hill L, Tanaka Y, Kitayama M, Yamazaki M, Bailey P, Parr A, Michael AJ, Saito K, Martin C (2007) Convergent evolution in the BAHD family of acyl transferases: identification and characterization of anthocyanin acyl transferases from Arabidopsis thaliana. Plant J 50:678–695

    Article  PubMed  CAS  Google Scholar 

  • Luo J, Fuell C, Parr A, Hill L, Bailey P, Elliott K, Fairhurst SA, Martin C, Michael AJ (2009) A novel polyamine acyltransferase responsible for the accumulation of spermidine conjugates in Arabidopsis seeds. Plant Cell 21:318–333

    Article  PubMed  CAS  Google Scholar 

  • Mackenzie PI, Owens IS, Burchell B, Bock KW, Bairoch A, Belanger A, Fournel-Gigleux S, Green M, Hum DW, Iyanagi T, Lancet D, Louisot P, Magdalou J, Chowdhury JR, Ritter JK, Schachter H, Tephly TR, Tipton KF, Nebert DW (1997) The UDP glycosyltransferase gene superfamily: recommended nomenclature update based on evolutionary divergence. Pharmacogenetics 7:255–269

    Article  PubMed  CAS  Google Scholar 

  • Manna SK, Mukhopadhyay A, Aggarwal BB (2000) Piceid suppresses TNF-induced activation of nuclear transcription factors NF-κB, activator protein-1, and apoptosis: potential role of reactive oxygen intermediates and lipid peroxidation. J Immunol 164:6509–6519

    PubMed  CAS  Google Scholar 

  • Marcinek H, Weyler W, Deus-Neumann B, Zenk MH (2000) Indoxyl-UDPG-glucosyltransferase from Baphicacanthus cusia. Phytochemistry 53:201–207

    Article  PubMed  CAS  Google Scholar 

  • Meißner D, Albert A, Böttcher C, Strack D, Milkowski C (2008) The role of UDP-glucose:hydroxycinnamate glucosyltransferases in phenylpropanoid metabolism and the response to UV-B radiation in Arabidopsis thaliana. Planta 228:663–674

    Article  PubMed  CAS  Google Scholar 

  • Meyer K, Cusumano JC, Somerville C, Chapple CCS (1996) Ferulate-5-hydroxylase from Arabidopsis thaliana defines a new family of cytochrome P450-dependent monooxygenases. Proc Natl Acad Sci USA 93:6869–6874

    Article  PubMed  CAS  Google Scholar 

  • Meßner B, Thulke O, Schäffner AR (2003) Arabidopsis glucosyltransferases with activities toward both endogenous and xenobiotic substrates. Planta 217:138–146

    PubMed  Google Scholar 

  • Milkowski C, Strack D (2004) Serine carboxypeptidase-like acyltransferases. Phytochemistry 65:517–524

    Article  PubMed  CAS  Google Scholar 

  • Milkowski C, Baumert A, Strack D (2000a) Cloning and heterologous expression of a rape cDNA encoding UDP-glucose:sinapate glucosyltransferase. Planta 211:883–886

    Article  PubMed  CAS  Google Scholar 

  • Milkowski C, Baumert A, Strack D (2000b) Identification of four Arabidopsis genes encoding hydroxycinnamate glucosyltransferases. FEBS Lett 486:183–184

    Article  PubMed  CAS  Google Scholar 

  • Milkowski C, Baumert A, Schmidt D, Nehlin L, Strack D (2004) Molecular regulation of sinapate ester metabolism in Brassica napus: expression of genes, properties of the encoded proteins and correlation of enzyme activities with metabolite accumulation. Plant J 38:80–92

    Article  PubMed  CAS  Google Scholar 

  • Mittasch J, Strack D, Milkowski C (2007) Secondary product glycosyltransferases in seeds of Brassica napus. Planta 225:515–522

    Article  PubMed  CAS  Google Scholar 

  • Mittasch J, Mikolajewski S, Breuer F, Strack D, Milkowski C (2010) Genomic microstructure and differential expression of the genes encoding UDP-glucose:sinapate sinapoyltransferase (UGT84A9) in oilseed rape (Brassica napus). Theor Appl Genet. doi:10.1007/s00122-010-1270-4

  • Mock H-P, Strack D (1993) Energetics of the uridine 5′-diphosphoglucose: hydroxycinnamic acid acyl-glucosyltransferase reaction. Phytochemistry 32:575–579

    Article  CAS  Google Scholar 

  • Mock H-P, Vogt T, Strack D (1992) Sinapoylglucose:malate sinapoyltransferase activity in Arabidopsis thaliana and Brassica napus. Z Naturforsch 47c:680–682

    Google Scholar 

  • Moore RC, Purugganan MD (2005) The evolutionary dynamics of plant duplicate genes. Curr Opin Plant Biol 8:122–128

    Article  PubMed  CAS  Google Scholar 

  • Mugford ST, Qi X, Bakht S, Hill L, Wegel E, Hughes RK, Papadopoulou K, Melton R, Philo M, Sainsbury F, Lomonossoff GP, Roy AD, Goss RJM, Osbourn A (2009) A serine carboxypeptidase-like acyltransferase is required for synthesis of antimicrobial compounds and disease resistance in oats. Plant Cell 21:2473–2484

    Article  PubMed  CAS  Google Scholar 

  • Murata N, Mohanty PS, Hayashi H, Papageorgiou GC (1992) Glycinebetaine stabilizes the association of extrinsic proteins with the photosynthetic oxygen-evolving complex. FEBS Lett 296:187–189

    Article  PubMed  CAS  Google Scholar 

  • Naczk M, Aramowicz A, Sullivan A, Shahidi F (1998) Current research developments on polyphenolics of rapeseeds/canola: a review. Food Chem 62:489–502

    Article  CAS  Google Scholar 

  • Nair RB, Joy RW, Kurylo E, Shi XH, Schnaider J, Datla RSS, Keller WA, Selveraj G (2000) Identification of a CYP84 family of cytochrome P450-dependent mono-oxygenase genes in Brassica napus and perturbation of their expression for engineering sinapine reduction in the seeds. Plant Physiol 123:1623–1634

    Article  PubMed  CAS  Google Scholar 

  • Nair RB, Xia Q, Kartha CJ, Kurylo E, Hirji RN, Datla R, Selvaraj G (2002) Arabidopsis CYP98A3 mediating aromatic 3-hydroxylation. Developmental regulation of the gene, and expression in yeast. Plant Physiol 130:210–220

    Article  PubMed  CAS  Google Scholar 

  • Nair RB, Bastress KL, Ruegger MO, Denault JW, Chapple C (2004) The Arabidopsis thaliana REDUCED EPIDERMAL FLUORESCENCE1 gene encodes an aldehyde dehydrogenase involved in ferulic acid and sinapic acid biosynthesis. Plant Cell 16:544–554

    Article  PubMed  CAS  Google Scholar 

  • Nesi N, Delourme R, Bregeon M, Falentin C, Renard M (2008) Genetic and molecular approaches to improve nutritional value of Brassica napus L. seed. Comp Rend Biol 331:763–771

    Article  CAS  Google Scholar 

  • Nurmann G, Strack D (1979) Sinapine esterase. Part I. Characterization of sinapine esterase from cotyledons of Raphanus sativus. Z Naturforsch 34c:715–720

    CAS  Google Scholar 

  • Nurmann G, Strack D (1981) Formation of 1-sinapoylglucose by UDP-glucose:sionapic acid glucosyltransferase from cotyledons of Raphanus sativus. Z Pflanzenphysiol 102:11–17

    CAS  Google Scholar 

  • Ober D, Hartmann T (1999) Homospermidine synthase, the first pathway-specific enzyme of pyrrolizidine alkaloid biosynthesis, evolved from deoxyhypusine synthase. Proc Natl Acad Sci USA 96:14777–14782

    Article  PubMed  CAS  Google Scholar 

  • Offen W, Martinez-Fleites C, Yang M, Lim EK, Davis BG, Tarling CA, Ford CM, Bowles DJ, Davies GJ (2006) Structure of a flavonoid glucosyltransferase reveals the basis for plant natural product modification. EMBO J 25:1396–1405

    Article  PubMed  CAS  Google Scholar 

  • Ohlson R (1978) Functional properties of rapeseed oil and protein product. In: Proc 5th Int Rapeseed Congr, Malmö, Sweden, pp 152–167

  • Ollis DL, Cheah E, Cygler M, Dijkstra B, Frolow F, Franken SM, Harel M, Remington SJ, Silman I, Schrag J, Sussman JL, Verschueren KHG, Goldman A (1992) The α/β hydrolase fold. Protein Eng 5:197–211

    Article  PubMed  CAS  Google Scholar 

  • Osakabe K, Tsao CC, Li L, Popko JL, Umezawa T, Carraway DT, Smeltzer RH, Joshi CP, Chiang VL (1999) Coniferyl aldehyde 5-hydroxylation and methylation direct syringyl lignin biosynthesis in angiosperms. Proc Natl Acad Sci USA 96:8955–8960

    Article  PubMed  CAS  Google Scholar 

  • Pace-Asciak CR, Hahn S, Diamanidis EP, Soleas G, Goldberg DM (1995) The red wine phenolics trans-piceid and quercetin block human platelet aggregation and eicosanoid synthesis: implications for protection against coronary heart disease. Clin Chim Acta 235:207–219

    Article  PubMed  CAS  Google Scholar 

  • Papageorgiou GC, Murata N (1995) The unusually strong stabilizing effects of glycinebetaine on the structure and function in the oxygen-evolving photosystem II complex. Photosynth Res 44:243–252

    Article  CAS  Google Scholar 

  • Paquette S, Møller BL, Bak S (2003) On the origin of family 1 plant glycosyltransferases. Phytochemistry 62:399–413

    Article  PubMed  CAS  Google Scholar 

  • Poppenberger B, Berthiller F, Lucyshyn D, Sieberer T, Schuhmacher R, Krska R, Kuchler K, Glossl J, Luschnig C, Adam G (2003) Detoxification of the fusarium mycotoxin deoxynivalenol by a UDP-glucosyltransferase from Arabidopsis thaliana. J Biol Chem 278:47905–47914

    Article  PubMed  CAS  Google Scholar 

  • Quiel JA, Benders J (2003) Glucose conjugation of anthranilate by the Arabidopsis UGT74F2 glucosyltransferase is required for tryptophan mutant blue fluorescence. J Biol Chem 278:6275–6281

    Article  PubMed  CAS  Google Scholar 

  • Rawel H, Rohn S, Kroll J (2000) Reaction of selected secondary plant metabolites (glucosinolates and phenols) with food proteins and enzymes—influence on physicochemical protein properties, enzyme activity and proteolytic degradation. Recent research developments. Phytochemistry 4:115–142

    CAS  Google Scholar 

  • Ross J, Li Y, Lim E-K, Bowles DJ (2001) Higher plant glycosyltransferases. Genome Biol 2: reviews 3004.1–3004.6

  • Rozwadowski KL, Khachatourians GG, Selvaraj G (1991) Choline oxidase, a catabolic enzyme in Arthrobacter pascens, facilitates adaptation to osmotic stress in Escherichia coli. J Bacteriol 173:472–478

    PubMed  CAS  Google Scholar 

  • Ruegger M, Chapple C (2001) Mutations that reduce sinapoylmalate accumulation in Arabidopsis thaliana define loci with diverse roles in phenylpropanoid metabolism. Genetics 159:1741–1749

    PubMed  CAS  Google Scholar 

  • Rupprich N, Kindl H (1978) Stilbene synthase and stilbene carboxylate synthases. I. Enzymatic synthesis of 3,5,4,-trihydroxystilbene from p-coumaroyl-CoA and malonyl-CoA. Hoppe Seyler’s Z Physiol Chem 359:165–175

    PubMed  CAS  Google Scholar 

  • Schoch G, Goepfert S, Morant M, Hehn A, Meyer D, Ullmann P, Werck-Reichhart D (2001) CYP98A3 from Arabidopsis thaliana is a 3′-hydroxylase of phenolic esters, a missing link in the phenylpropanoid pathway. J Biol Chem 276:36566–36574

    Article  PubMed  CAS  Google Scholar 

  • Shahidi F, Naczk M (1992) An overview of the phenolics of canola and rapeseed: chemical, sensory and nutritional significance. J Am Oil Chem Soc 69:917–924

    Article  CAS  Google Scholar 

  • Shao H, He H, Achnine L, Blount JW, Dixon RA, Wang X (2005) Crystal structures of a multi-functional triterpene/flavonoid glycosyltransferase from Medicago truncatula. Plant Cell 17:3141–3154

    Article  PubMed  CAS  Google Scholar 

  • Sheahan JJ (1996) Sinapate esters provide greater UV-B attenuation than flavonoids in Arabidopsis thaliana (Brassicaceae). Am J Bot 83:679–686

    Article  CAS  Google Scholar 

  • Shirley AM, Chapple C (2003) Biochemical characterization of sinapoylglucose:choline sinapoyltransferase, a serine carboxypeptidase-like protein that functions as an acyltransferase in plant secondary metabolism. J Biol Chem 278:19870–19877

    Article  PubMed  CAS  Google Scholar 

  • Shirley AM, McMichael CM, Chapple C (2001) The sng2 mutant of Arabidopsis is defective in the gene encoding the serine carboxypeptidase-like protein sinapoylglucose:choline sinapoyltransferase. Plant J 28:83–94

    Article  PubMed  CAS  Google Scholar 

  • Sinlapadech T, Stout J, Ruegger MO, Deak M, Chapple C (2007) The hyper-fluorescent trichome phenotype of the brt1 mutant of Arabidopsis is the result of a defect in a sinapic acid: UDPG glucosyltransferase. Plant J 49:655–668

    Article  PubMed  CAS  Google Scholar 

  • St Pierre B, De Luca V (2000) Evolution of acyltransferase genes: origin and diversification of the BAHD superfamily of acyltransferases involved in secondary metabolism. In: Romeo JT, Ibrahim R, Varin L, De Luca V (eds) Evolution of metabolic pathways. Recent Adv Phytochemistry, vol 34, Elsevier Science, pp 285–315

  • Stark-Lorenzen P, Nelke P, Hänßler G, Mühlbach HP, Thomzik JE (1997) Transfer of a grapevine stilbene synthase gene to rice (Oryza sativa L.). Plant Cell Rep 16:668–673

    Article  CAS  Google Scholar 

  • Steffens JC (2000) Acyltransferases in protease’s clothing. Plant Cell 12:1253–1255

    Article  PubMed  CAS  Google Scholar 

  • Stehle F, Brandt W, Milkowski C, Strack D (2006) Structure determinants and substrate recognition of serine carboxypeptidase-like acyltransferases from plant secondary metabolism. FEBS Lett 580:6366–6374

    Article  PubMed  CAS  Google Scholar 

  • Stehle F, Stubbs MT, Strack D, Milkowski C (2008a) Heterologous expression of a serine carboxypeptidase-like acyltransferase and characterization of the kinetic mechanism. FEBS J 275:775–787

    Article  PubMed  CAS  Google Scholar 

  • Stehle F, Brandt W, Schmidt J, Milkowski C, Strack D (2008b) Activities of Arabidopsis sinapoylglucose:malate sinapoyltransferase shed light on functional diversification of serine carboxypeptidase-like acyltransferases. Phytochemistry 69:1826–1831

    Article  PubMed  CAS  Google Scholar 

  • Stehle F, Brandt W, Stubbs MT, Milkowski C, Strack D (2009) Sinapolytransferases in the light of molecular evolution. Phytochemistry 70:1652–1661

    Article  PubMed  CAS  Google Scholar 

  • Strack D (1980) Enzymatic synthesis of 1-sinapoylglucose from free sinapic acid and UDP-glucose by a cell-free system from Raphanus sativus seedlings. Z Naturforsch 35c:204–208

    CAS  Google Scholar 

  • Strack D (1981) Sinapine as a supply of choline for the biosynthesis of phosphatidylcholine in Raphanus sativus seedlings. Z Naturforsch 36c:215–221

    Google Scholar 

  • Strack D, Nurmann G, Sachs G (1980) Sinapine esterase. Part II. Specificity and change of sinapine esterase activity during germination of Raphanus sativus. Z Naturforsch 35c:963–966

    CAS  Google Scholar 

  • Strack D, Knogge W, Dahlbender B (1983) Enzymatic synthesis of sinapine from 1-O-β-d-glucose and choline by a cell-free system from developing seeds of red radish (Raphanus sativus L. var. sativus). Z Naturforsch 38c:21–27

    CAS  Google Scholar 

  • Strack D, Pieroth M, Scharf H, Sharam V (1985) Tissue distribution of phenylpropanoid metabolism in cotyledons of Raphanus sativus L. Planta 164:507–511

    Article  CAS  Google Scholar 

  • Strack D, Gross W, Wray V, Grotjahn L (1987) Enzymic synthesis of caffeoylglucaric acid from chlorogenic acid and glucaric acid by a protein preparation from tomato cotyledons. Plant Physiol 83:475–478

    Article  PubMed  CAS  Google Scholar 

  • Strack D, Gross W, Heilemann J, Keller H, Ohm S (1988) Enzymic synthesis of hydroxycinnamic acid esters of glucaric acid and hydroaromatic acids from the respective 1-O-hydroxycinnamoylglucoside and hydroxycinnamoyl-coenzyme A thioester as acyl donors with a protein preparation from Cestrum elegans leaves. Z Naturforsch 43c:32–36

    Google Scholar 

  • Szankowski I, Briviba K, Fleschhut J, Schönherr J, Jacobsen HJ, Kiesecker H (2003) Transformation of apple (Malus domestica Borkh.) with the stilbene synthase gene from grapevine (Vitis vinifera L.) and a PGIP gene from kiwi (Actinidia deliciosa). Plant Cell Rep 22:141–149

    Article  PubMed  CAS  Google Scholar 

  • Thorsøe K, Bak S, Olson CE, Breton A, Imberty C, Møller BL (2005) Determination of catalytic key amino acids and UDP sugar donor specificity of the cyanohydrin glycosyltransferase UGT85B1 from Sorghum bicolor. Molecular modeling substantiated by site-specific mutagenesis and biochemical analyses. Plant Physiol 139:664–673

    Article  PubMed  CAS  Google Scholar 

  • Tkotz N, Strack D (1980) Enzymatic synthesis of sinapoyl-l-malate from 1-sinapoylglucose and l-malate by a protein preparation from Raphanus sativus cotelydons. Z Naturforsch 35:835–837

    Google Scholar 

  • Town CD, Cheung F, Maiti R, Crabtree J, Haas BJ, Wortmann JR, Hine EE, Althoff R, Arbogast TS, Tallon LJ, Vigouroux M, Trick M, Bancroft I (2006) Comparative genomics of Brassica oleracea and Arabidopsis thaliana reveal gene loss, fragmentation, and dispersal after polyploidy. Plant Cell 18:1348–1359

    Article  PubMed  CAS  Google Scholar 

  • Tzagoloff A (1963a) Metabolism of sinapine in mustard plants. I. Degradation of sinapine into sinapic acid and choline. Plant Physiol 38:202–206

    Article  PubMed  CAS  Google Scholar 

  • Tzagoloff A (1963b) Metabolism of sinapine in mustard plants. II. Purification and some properties of sinapine esterase. Plant Physiol 38:207–213

    Article  PubMed  CAS  Google Scholar 

  • Velasco L, Möllers C (1998) Nondestructive assessment of sinapic acid esters in Brassica species: II. Evaluation of germplasm and identification of phenotypes with reduced levels. Crop Sci 38:1650–1654

    Article  CAS  Google Scholar 

  • Villegas RJA, Kojima M (1986) Purification and characterization of hydroxycinnamoyl d-glucose quinate hydroxycinnamoyl transferase in the root of sweet potato, Ipomoea batatas LAM. J Biol Chem 261:8729–8733

    PubMed  CAS  Google Scholar 

  • Vogt T, Jones P (2000) Glycosyltransferases in plant natural product synthesis: characterisation of a supergene family. Trends Plant Sci 5:380–386

    Article  PubMed  CAS  Google Scholar 

  • Vogt T, Aebershold R, Ellis B (1993) Purification and characterization of sinapine synthase from seeds of Brassica napus. Arch Biochem Biophys 300:622–628

    Article  PubMed  CAS  Google Scholar 

  • Vogt T, Zimmermann E, Grimm R, Meyer M, Strack D (1997) Are the characteristics of betanidin glucosyltransferases from cell suspension cultures of Dorotheanthus bellidiformis indicative of their phylogenetic relationship with flavonoid glucosyltransferases? Planta 203:349–361

    Article  PubMed  CAS  Google Scholar 

  • Wang X (2001) Plant phospholipases. Annu Rev Plant Physiol Biol 52:211–231

    Article  CAS  Google Scholar 

  • Wang SX, Ellis BE (1998) Enzymology of UDP-glucose:sinapic acid glucosyltransferase from Brassica napus. Phytochemistry 49:307–318

    Article  CAS  Google Scholar 

  • Wang S, Oomah BD, McGregor DI, Downey RK (1998) Genetic and seasonal variation in the sinapine content of seed from Brassica and Sinapis species. Can J Plant Sci 78:395–400

    Article  CAS  Google Scholar 

  • Weier D, Mittasch J, Strack D, Milkowski C (2007) The genes BnSCT1 and BnSCT2 from Brassica napus encoding the final enzyme of sinapine biosynthesis: molecular characterization and suppression. Planta 227:375–385

    Article  PubMed  CAS  Google Scholar 

  • Widmer F, Johansen JT (1979) Enzymatic peptide synthesis: carboxypeptidase catalyzed formation of peptide bonds. Carlsberg Res Commun 44:37–46

    Article  CAS  Google Scholar 

  • Wolfram K, Schmidt J, Wray V, Milkowski C, Schliemann W, Strack D (2010) Profiling of phenylpropanoids in transgenic low-sinapine oilseed rape (Brassica napus). Phytochemistry. doi:10.1016/j.phytochem.2010.04.007

  • Wyn-Jones RG (1984) Phytochemical aspects of osmotic adaptation. Recent Adv Phytochem 18:55–78

    Google Scholar 

  • Yonekura-Sakakibara K, Tanaka Y, Fukuchi-Mizutani M, Fujiwara H, Fukui Y, Ashikari T, Murakami Y, Yamaguchi M, Kusumi T (2000) Molecular and biochemical characterization of a novel hydroxycinnamoyl-CoA:anthocyanin 3-O-glucoside-6-O-acyltransferase from Perilla frutescens. Plant Cell Physiol 41:495–502

    PubMed  CAS  Google Scholar 

  • Zeisel SH (2000) Choline: an essential nutrient for humans. Nutrition 16:669–671

    Article  PubMed  CAS  Google Scholar 

  • Zhao Y, Aspinall D, Paleg LG (1992) Protection of membrane integrity in Medicago sativa L. by glycinebetaine against the effects of freezing. J Plant Physiol 140:541–543

    CAS  Google Scholar 

  • Zhou A, Li J (2005) Arabidopsis BRS1 is a secreted and active serine carboxypeptidase. J Biol Chem 280:35554–35561

    Article  PubMed  CAS  Google Scholar 

  • Zum Felde T, Becker HC, Möllers C (2006) Genotype × environment interactions, heritability, and trait correlations of sinapate ester content in winter rapeseed (Brassica napus L.). Crop Sci 46:2195–2199

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Work in our laboratory reviewed in this article was supported by the Bundesministerium für Bildung und Forschung (BMBF) within the research projects “Napus 2000—Healthy Food from Transgenic Rape Seeds” and “YelLowSin Rapeseed: Functional Genomics Approaches for the Development of Yellow-Seeded, Low Sinapine Oilseed Rape/Canola (Brassica napus)”, as well as by the German Science Foundation (DFG; Bonn, Germany) within the priority program 1152, “Evolution of Metabolic Diversity” (EvoMet) and individual research grants provided by the DFG.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Carsten Milkowski or Dieter Strack.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Milkowski, C., Strack, D. Sinapate esters in brassicaceous plants: biochemistry, molecular biology, evolution and metabolic engineering. Planta 232, 19–35 (2010). https://doi.org/10.1007/s00425-010-1168-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-010-1168-z

Keywords

Navigation