Altmaier, E., Ramsay, S. L., Graber, A., Mewes, H.-W., Weinberger, K. M., & Suhre, K. (2008). Bioinformatics analysis of targeted metabolomics—Uncovering old and new tales of diabetic mice under medication. Endocrinology, 149, 11.
Article
Google Scholar
Amin, A. P., Spertus, J. A., Reid, K. J., Lan, X., Buchanan, D. M., Decker, C., et al. (2010). The prognostic importance of worsening renal function during an acute myocardial infarction on long-term mortality. American Heart Journal, 160, 1065–1071.
Article
Google Scholar
Anavekar, N. S., McMurray, J. J. V., Velazquez, E. J., Solomon, S. D., Kober, L., Rouleau, J.-L., et al. (2004). Relation between renal dysfunction and cardiovascular outcomes after myocardial infarction. New England Journal of Medicine, 351, 1285–1295.
CAS
Article
Google Scholar
Aue, W. P., Bartholdi, E., & Ernst, R. R. (1975). Two-dimensional spectroscopy. Application to nuclear magnetic resonance. The Journal of Chemical Physics, 64, 2229–2246.
Article
Google Scholar
Bhatt, H. B., & Smith, R. J. (2015). Fatty liver disease in diabetes mellitus. Hepatobiliary Surgery and Nutrition, 4, 101–108.
PubMed
PubMed Central
Google Scholar
Boldyrev, A. A., Aldini, G., & Derave, W. (2013). Physiology and pathophysiology of carnosine. Physiological Reviews, 93, 1803–1845.
CAS
Article
Google Scholar
Bredt, D. S., & Snyder, S. H. (1994). Nitric oxide: A physiologic messenger molecule. Annual Review of Biochemestry, 63, 20.
Google Scholar
Bugianesi, E., Vanni, E., & Marchesini, G. (2007). NASH and the risk of cirrhosis and hepatocellular carcinoma in type 2 diabetes. Current Diabetes Reports, 7, 175–180.
Article
Google Scholar
Chan, O., Paranjape, S. A., Horblitt, A., Zhu, W., & Sherwin, R. S. (2013). Lactate-induced release of GABA in the ventromedial hypothalamus contributes to counterregulatory failure in recurrent hypoglycemia and diabetes. Diabetes, 62, 4239–4246.
CAS
Article
Google Scholar
Chan, O., Zhu, W., Ding, Y., Mccrimmon, R. J., & Sherwin, R. S. (2006). Blockade of GABAA receptors in the ventromedial hypothalamus further stimulates glucagon and sympathoadrenal but not the hypothalamo-pituitary-adrenal response to hypoglycemia. Diabetes, 55, 7.
Article
Google Scholar
Claus, S. P., Ellero, S. L., Berger, B., Krause, L., Bruttin, A., Molina, J., et al. (2011). Colonization-induced host-gut microbial metabolic interaction. mBio, 2, e00271–10.
Article
Google Scholar
Claus, S. P., Tsang, T. M., Wang, Y., Cloarec, O., Skordi, E., Martin, F. P., et al. (2008). Systemic multicompartmental effects of the gut microbiome on mouse metabolic phenotypes. Molecular Systems Biology, 4, 219.
Article
Google Scholar
Cloarec, O., Dumas, M.-E., Craig, A., Barton, R. H., Trygg, J., Hudson, J., et al. (2005). Statistical total correlation spectroscopy: An exploratory approach for latent biomarker identification from metabolic 1H NMR data sets. Analytical Chemistry, 77, 1282–1289.
CAS
Article
Google Scholar
Connor, S. C., Hansen, M. K., Corner, A., Smith, R. F., & Ryan, T. E. (2010). Integration of metabolomics and transcriptomics data to aid biomarker discovery in type 2 diabetes. Molecular BioSystems, 6, 909–921.
CAS
Article
Google Scholar
Coppey, L. J., Gellett, J. S., Davidson, E. P., Dunlap, J. A., & Yorek, M. A. (2002). Effect of treating streptozotocin-induced diabetic rats with sorbinil, myo-inositol or aminoguanidine on endoneurial blood flow, motor nerve conduction velocity and vascular function of epineurial arterioles of the sciatic nerve. International Journal of Experimental Diabetes Research, 3, 21–36.
Article
Google Scholar
de Castro, N. M., Yaqoob, P., de la Fuente, M., Baeza, I., & Claus, S. P. (2013). Premature impairment of methylation pathway and cardiac metabolic dysfunction in fa/fa Obese Zucker Rats. Journal of Proteome Research, 12(4), 1935–1945.
Article
Google Scholar
Dieterle, F., Ross, A., Schlotterbeck, G., & Senn, H. (2006). Probabilistic quotient normalization as robust method to account for dilution of complex biological mixtures. Application in 1H NMR metabonomics. Analytical Chemistry, 78, 4281–4290.
CAS
Article
Google Scholar
Dodd, D., Spitzer, M. H., Van Treuren, W., Merrill, B. D., Hryckowian, A. J., Higginbottom, S. K., et al. (2017). A gut bacterial pathway metabolizes aromatic amino acids into nine circulating metabolites. Nature, 551, 648.
CAS
Article
Google Scholar
Eppens, M. C., Craig, M. E., Cusumano, J., Hing, S., Chan, A. K. F., Howard, N. J., et al. (2006). Prevalence of diabetes complications in adolescents with type 2 compared with type 1 diabetes. Diabetes Care, 29, 1300–1306.
Article
Google Scholar
Escalona, E. E., Leng, J., Dona, A. C., Merrifield, C. A., Holmes, E., Proudman, C. J., et al. (2015). Dominant components of the Thoroughbred metabolome characterised by 1H-nuclear magnetic resonance spectroscopy: A metabolite atlas of common biofluids. Equine Veterinary Journal, 47, 721–730.
CAS
Article
Google Scholar
Ferrante, R. J., Andreassen, O. A., Jenkins, B. G., Dedeoglu, A., Kuemmerle, S., Kubilus, J. K., et al. (2000). Neuroprotective effects of creatine in a transgenic mouse model of Huntington’s disease. The Journal of Neuroscience, 20, 4389–4397.
CAS
Article
Google Scholar
Fournet, M., Bonté, F., & Desmoulière, A. (2018). Glycation damage: A possible hub for major pathophysiological disorders and aging. Aging and Disease, 9, 880–900.
Article
Google Scholar
Frolkis, A., Knox, C., Lim, E., Jewison, T., Law, V., Hau, D. D., et al. (2010). SMPDB: The small molecule pathway database. Nucleic Acids Research, 38, D480–D487.
CAS
Article
Google Scholar
Fujisaka, S., Avila-Pacheco, J., Soto, M., Kostic, A., Dreyfuss, J. M., Pan, H., et al. (2018). Diet, genetics, and the gut microbiome drive dynamic changes in plasma metabolites. Cell Reports, 22, 3072–3086.
CAS
Article
Google Scholar
Gabbay, K. H. (1973). The sorbitol pathway and the complications of diabetes. New England Journal of Medicine, 288, 831–836.
CAS
Article
Google Scholar
Gipson, G. T., Tatsuoka, K. S., Ball, R. J., Sokhansanj, B. A., Hansen, M. K., Ryan, T. E., et al. (2008). Multi-platform investigation of the metabolome in a leptin receptor defective murine model of type 2 diabetes. Molecular BioSystems, 4, 1015–1023.
CAS
Article
Google Scholar
Goto, R., Doi, M., Ma, N., Semba, R., & Uji, Y. (2005). Contribution of nitric oxide-producing cells in normal and diabetic rat retina. Japanese Journal of Ophthalmology, 49, 363–370.
CAS
Article
Google Scholar
Group, T. S. (2012). A clinical trial to maintain glycemic control in youth with type 2 diabetes. The New England Journal of Medicine, 366, 2247–2256.
Article
Google Scholar
Gualano, A. B., Bozza, T., Lopes De Campos, P., Roschel, H., Dos Santos Costa, A., Luiz, Marquezi M., et al. (2011). Branched-chain amino acids supplementation enhances exercise capacity and lipid oxidation during endurance exercise after muscle glycogen depletion. The Journal of Sports Medicine and Physical Fitness, 51(1), 82–88.
CAS
PubMed
Google Scholar
Gualano, B., Novaes, R. B., Artioli, G. G., Freire, T. O., Coelho, D. F., Scagliusi, F. B., et al. (2007). Effects of creatine supplementation on glucose tolerance and insulin sensitivity in sedentary healthy males undergoing aerobic training. Amino Acids, 34, 245.
Article
Google Scholar
Hao, J., Yang, T., Zhou, Y., Gao, G.-Y., Xing, F., Peng, Y., et al. (2017). Serum metabolomics analysis reveals a distinct metabolic profile of patients with primary biliary cholangitis. Scientific Reports, 7, 784.
Article
Google Scholar
Hazlehurst, J. M., Woods, C., Marjot, T., Cobbold, J. F., & Tomlinson, J. W. (2016). Non-alcoholic fatty liver disease and diabetes. Metabolism, Clinical and Experimental, 65, 1096–1108.
CAS
Article
Google Scholar
Holmes, E., Foxall, P. J. D., Spraul, M., Duncan Farrant, R., Nicholson, J. K., & Lindon, J. C. (1997). 750 MHz 1H NMR spectroscopy characterisation of the complex metabolic pattern of urine from patients with inborn errors of metabolism: 2-hydroxyglutaric aciduria and maple syrup urine disease. Journal of Pharmaceutical and Biomedical Analysis, 15, 1647–1659.
CAS
Article
Google Scholar
Honda, M., Inoue, M., Okada, Y., & Yamamoto, M. (1998). Alteration of the GABAergic neuronal system of the retina and superior colliculus in streptozotocin-induced diabetic rat. Kobe Journal of Medical Sciences, 44, 7.
Google Scholar
Ishikawa, A., Ishiguro, S., & Tamai, M. (1996). Changes in GABA metabolism in streptozotocin-induced diabetic rat retinas. Current Eye Research, 15, 9.
Article
Google Scholar
Kim, K. E., Jung, Y., Min, S., Nam, M., Heo, R. W., Jeon, B. T., et al. (2016). Caloric restriction of db/db mice reverts hepatic steatosis and body weight with divergent hepatic metabolism. Scientific Reports, 6, 30111.
CAS
Article
Google Scholar
Kobayashi, N., Ishiguro, S.-I., Tomita, H., Nishikawa, S., & Tamai, M. (1999). Changes of GABA metabolic enzymes in acute retinal ischemia. Experimental Eye Research, 69, 91–96.
CAS
Article
Google Scholar
Kouzu, H., Miki, T., Tanno, M., Kuno, A., Yano, T., Itoh, T., et al. (2015). Excessive degradation of adenine nucleotides by up-regulated AMP deaminase underlies afterload-induced diastolic dysfunction in the type 2 diabetic heart. Journal of Molecular and Cellular Cardiology, 80, 136–145.
CAS
Article
Google Scholar
Krakoff, J., Lindsay, R. S., Looker, H. C., Nelson, R. G., Hanson, R. L., & Knowler, W. C. (2003). Incidence of retinopathy and nephropathy in youth-onset compared with adult-onset type 2 diabetes. Diabetes Care, 26, 76–81.
Article
Google Scholar
Le Roy, C. I., Mappley, L. J., La Ragione, R. M., Woodward, M. J., & Claus, S. P. (2016). NMR-based metabolic characterization of chicken tissues and biofluids: a model for avian research. Metabolomics, 12, 157.
Article
Google Scholar
Li, X.-B., Gu, J.-D., & Zhou, Q. H. (2015). Review of aerobic glycolysis and its key enzymes—new targets for lung cancer therapy. Thoracic Cancer, 6, 17–24.
CAS
Article
Google Scholar
Lorenzi, M. (2007). The polyol pathway as a mechanism for diabetic retinopathy: attractive, elusive, and resilient. Experimental Diabetes Research, 2007, 61038.
Article
Google Scholar
Loy, A., Lurie, K. G., Ghosh, A., Wilson, J. M., MacGregor, L. C., & Matschinsky, F. M. (1990). Diabetes and the myo-inositol paradox. Diabetes, 39, 1305–1312.
CAS
Article
Google Scholar
Madeira, C., Lourenco, M. V., Vargas-Lopes, C., Suemoto, C. K., Brandao, C. O., Reis, T., et al. (2015). d-serine levels in Alzheimer/’s disease: implications for novel biomarker development. Translational Psychiatry, 5, e561.
CAS
Article
Google Scholar
Magnusson, I., Rothman, D. L., Katz, L. D., Shulman, R. G., & Shulman, G. I. (1992). Increased rate of gluconeogenesis in Type II Diabetes mellitus. A 13C nuclear magnetic resonance study. The Journal of Clinical Investigation, 90, 1323–1327.
CAS
Article
Google Scholar
Major, H. J., Williams, R., Wilson, A. J., & Wilson, I. D. (2006). A metabonomic analysis of plasma from Zucker rat strains using gas chromatography/mass spectrometry and pattern recognition. Rapid Communications in Mass Spectrometry, 20, 7.
Article
Google Scholar
Martin, F.-P. J., Dumas, M.-E., Wang, Y., Legido-Quigley, C., Yap, I. K. S., Tang, H., et al. (2007). A top-down systems biology view of microbiome-mammalian metabolic interactions in a mouse model. Molecular Systems Biology, 3, 112.
Article
Google Scholar
Meiboom, S., & Gill, D. (1958). Modified spin-echo method for measuring nuclear relaxation times. Review of Scientific Instruments, 29, 3.
Article
Google Scholar
Meldrum, B. S. (2000). Glutamate as a neurotransmitter in the brain: Review of physiology and pathology. The Journal of Nutrition, 130(4), 1007S–1015S.
CAS
Article
Google Scholar
Menni, C., Fauman, E., Erte, I., Perry, J. R. B., Kastenmüller, G., Shin, S.-Y., et al. (2013). Biomarkers for type 2 diabetes and impaired fasting glucose using a nontargeted metabolomics approach. Diabetes, 62, 4270–4276.
CAS
Article
Google Scholar
Merrifield, C. A., Lewis, M., Claus, S. P., Beckonert, O. P., Dumas, M.-E., Duncker, S., et al. (2011). A metabolic system-wide characterisation of the pig: a model for human physiology. Molecular BioSystems, 7, 2577–2588.
CAS
Article
Google Scholar
Mora-Ortiz, M., Trichard, M., Oregioni, A., & Claus, S. P. (2019). Thanatometabolomics: introducing NMR-based metabolomics to identify metabolic biomarkers of the time of death. Metabolomics, 15, 37.
Article
Google Scholar
Nagana Gowda, G. A., Zhang, S., Gu, H., Asiago, V., Shanaiah, N., & Raftery, D. (2008). Metabolomics-based methods for early disease diagnostics: A review. Expert Review of Molecular Diagnostics, 8, 617–633.
Article
Google Scholar
Ndagijimana, M., Laghi, L., Vitali, B., Placucci, G., Brigidi, P., & Guerzoni, M. E. (2009). Effect of a synbiotic food consumption on human gut metabolic profiles evaluated by 1H Nuclear Magnetic Resonance spectroscopy. International Journal of Food Microbiology, 134, 147–153.
CAS
Article
Google Scholar
Nicholls, D. G., Budd, S. L., Ward, M. W., & Castilho, R. F. (1999). Excitotoxicity and mitochondria. Biochemical Society Symposium, 66, 55–67.
CAS
Article
Google Scholar
Oldendorf, W. (1971). Brain uptake of radiolabeled amino acids, amines, and hexoses after arterial injection. American Journal of Physiology-Legacy Content, 221, 1629–1639.
CAS
Article
Google Scholar
Op’t Eijnde, B., Jijakli, H., Hespel, P., & Malaisse, W. J. (2006). Creatine supplementation increases soleus muscle creatine content and lowers the insulinogenic index in an animal model of inherited type 2 diabetes. International Journal of Molecular Medicine, 17, 7.
Google Scholar
Postic, C., & Girard, J. (2008). Contribution of de novo fatty acid synthesis to hepatic steatosis and insulin resistance: Lessons from genetically engineered mice. The Journal of Clinical Investigation, 118, 829–838.
CAS
Article
Google Scholar
Saadat, N., IglayReger, H. B., Myers, M. G., Bodary, P., & Gupta, S. V. (2012). Differences in metabolomic profiles of male db/db and s/s, leptin receptor mutant mice. Physiological Genomics, 44, 374–381.
CAS
Article
Google Scholar
Sakitani, K., Enooku, K., Kubo, H., Tanaka, A., Arai, H., Kawazu, S., et al. (2017). Clinical characteristics of patients with diabetes mellitus and fatty liver diagnosed by liver/spleen Hounsfield units on CT scan. The Journal of International Medical Research, 45, 1208–1220.
CAS
Article
Google Scholar
Salek, R. M., Maguire, M. L., Bentley, E., Rubtsov, D. V., Hough, T., Cheeseman, M., et al. (2007). A metabolomic comparison of urinary changes in type 2 diabetes in mouse, rat, and human. Physiological Genomics, 29, 99–108.
CAS
Article
Google Scholar
Sas, K. M., Kayampilly, P., Byun, J., Nair, V., Hinder, L. M., Hur, J., et al. (2016). Tissue-specific metabolic reprogramming drives nutrient flux in diabetic complications. JCI Insight, 1, 1. https://doi.org/10.1172/jci.insight.86976.
Article
Google Scholar
Scheuermann-Freestone, M., Madsen, P. L., Manners, D., Blamire, A. M., Buckingham, R. E., Styles, P., et al. (2003). Abnormal cardiac and skeletal muscle energy metabolism in patients with type 2 diabetes. Circulation, 107, 3040–3046.
CAS
Article
Google Scholar
Shao, N., Kuang, H. Y., Wang, N., Gao, X. Y., Hao, M., Zou, W., et al. (2013). Relationship between oxidant/antioxidant markers and severity of microalbuminuria in the early stage of nephropathy in type 2 diabetic patients. Journal of Diabetes Research, 2013, 232404.
Article
Google Scholar
Shaw, J. E., Sicree, R. A., & Zimmet, P. Z. (2010). Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Research and Clinical Practice, 87, 4–14.
CAS
Article
Google Scholar
Singh, S. P., & Singh, V. (2011). Meta-analysis of the efficacy of adjunctive NMDA receptor modulators in chronic schizophrenia. CNS Drugs, 25, 859–885.
CAS
Article
Google Scholar
Smith, Q. R., Momma, S., Aoyagi, M., & Rapoport, S. I. (1987). Kinetics of neutral amino acid transport across the blood-brain barrier. Journal of Neurochemistry, 49, 1651–1658.
CAS
Article
Google Scholar
Solinas, G., Borén, J., & Dulloo, A. G. (2015). De novo lipogenesis in metabolic homeostasis: More friend than foe? Molecular Metabolism, 4, 367–377.
CAS
Article
Google Scholar
Tai, N., Wong, F. S., & Wen, L. (2015). The role of gut microbiota in the development of type 1, type 2 diabetes mellitus and obesity. Reviews in Endocrine and Metabolic Disorders, 16, 55–65.
CAS
Article
Google Scholar
Trautner, C., Icks, A., Haastert, B., Plum, F., & Berger, M. (1997). Incidence of blindness in relation to diabetes. A population-based study. Diabetes Care, 20(7), 7.
Article
Google Scholar
Vaidyanathan, J., Vaidyanathan, T. K., Yadav, P., & Linaras, C. E. (2001). Collagen–ligand interaction in dentinal adhesion: Computer visualization and analysis. Biomaterials, 22, 2911–2920.
CAS
Article
Google Scholar
Wei, T., Zhao, L., Jia, J., Xia, H., Du, Y., Lin, Q., et al. (2015). Metabonomic analysis of potential biomarkers and drug targets involved in diabetic nephropathy mice. Scientific Reports, 5, 11998.
Article
Google Scholar
Wu, J., Jin, Z., Zheng, H., & Yan, L.-J. (2016). Sources and implications of NADH/NAD(+) redox imbalance in diabetes and its complications. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 9, 145–153.
CAS
Google Scholar
Yokoyama, H., Okudaira, M., Otani, T., Takaike, H., Miura, J., Saeki, A., et al. (1997). Existence of early-onset NIDDM Japanese demonstrating severe diabetic complications. Diabetes Care, 20, 844–847.
CAS
Article
Google Scholar
You, Y.-H., Quach, T., Saito, R., Pham, J., & Sharma, K. (2016). Metabolomics reveals a key role for fumarate in mediating the effects of NADPH oxidase 4 in diabetic kidney disease. Journal of the American Society of Nephrology, 27, 466.
CAS
Article
Google Scholar
Yudkoff, M., Daikhin, Y., Nissim, I., Horyn, O., Luhovyy, B., Lazarow, A., et al. (2005). Brain amino acid requirements and toxicity: The example of leucine. The Journal of Nutrition, 135, 1531S–1538S.
CAS
Article
Google Scholar
Zawdie, B., Tadesse, S., Wolide, A. D., Nigatu, T. A., & Bobasa, E. M. (2018). Non-alcoholic fatty liver disease and associated factors among type 2 diabetic patients in Southwest Ethiopia. Ethiopian Journal of Health Sciences, 28, 19–30.
Article
Google Scholar
Zhu, W., Czyzyk, D., Paranjape, S. A., Zhou, L., Horblitt, A., Szabó, G., et al. (2010). Glucose prevents the fall in ventromedial hypothalamic GABA that is required for full activation of glucose counterregulatory responses during hypoglycemia. American Journal of Physiology-Endocrinology and Metabolism, 298, E971–E977.
CAS
Article
Google Scholar