Angebault, C., Gueguen, N., Desquiret-Dumas, V., Chevrollier, A., Guillet, V., Verny, C., et al. (2011). Idebenone increases mitochondrial complex I activity in fibroblasts from LHON patients while producing contradictory effects on respiration. BMC Research Notes, 4, 557. https://doi.org/10.1186/1756-0500-4-557.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bayet-Robert, M., Loiseau, D., Rio, P., Demidem, A., Barthomeuf, C., Stepien, G., & Morvan, D. (2010). Quantitative two-dimensional HRMAS 1H-NMR spectroscopy-based metabolite profiling of human cancer cell lines and response to chemotherapy. Magnetic Resonance in Medicine, 63(5), 1172–1183. https://doi.org/10.1002/mrm.22303.
Article
PubMed
CAS
Google Scholar
Baykal, A. T., Jain, M. R., & Li, H. (2008). Aberrant regulation of choline metabolism by mitochondrial electron transport system inhibition in neuroblastoma cells. Metabolomics, 4(4), 347–356. https://doi.org/10.1007/s11306-008-0125-3.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bellaver, B., Bobermin, L. D., Souza, D. G., Rodrigues, M. D. N., de Assis, A. M., Wajner, M., et al. (2016). Signaling mechanisms underlying the glioprotective effects of resveratrol against mitochondrial dysfunction. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1862(9), 1827–1838. https://doi.org/10.1016/j.bbadis.2016.06.018.
Article
CAS
Google Scholar
Beretta, S., Mattavelli, L., Sala, G., Tremolizzo, L., Schapira, A. H. V., Martinuzzi, A., et al. (2004). Leber hereditary optic neuropathy mtDNA mutations disrupt glutamate transport in cybrid cell lines. Brain: A Journal of Neurology, 127(Pt 10), 2183–2192. https://doi.org/10.1093/brain/awh258.
Article
Google Scholar
Boren, J., & Brindle, K. M. (2012). Apoptosis-induced mitochondrial dysfunction causes cytoplasmic lipid droplet formation. Cell Death and Differentiation, 19(9), 1561–1570. https://doi.org/10.1038/cdd.2012.34.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chao de la Barca, J. M., Simard, G., Amati-Bonneau, P., Safiedeen, Z., Prunier-Mirebeau, D., Chupin, S., et al. (2016). The metabolomic signature of Leber’s hereditary optic neuropathy reveals endoplasmic reticulum stress. Brain, 139(11), 2864–2876. https://doi.org/10.1093/brain/aww222.
Article
PubMed
Google Scholar
de Oliveira, M. R., Nabavi, S. F., Manayi, A., Daglia, M., Hajheydari, Z., & Nabavi, S. M. (2016). Resveratrol and the mitochondria: From triggering the intrinsic apoptotic pathway to inducing mitochondrial biogenesis, a mechanistic view. Biochimica et Biophysica Acta, 1860(4), 727–745. https://doi.org/10.1016/j.bbagen.2016.01.017.
Article
PubMed
CAS
Google Scholar
Distelmaier, F., Valsecchi, F., Liemburg-Apers, D. C., Lebiedzinska, M., Rodenburg, R. J., Heil, S., et al. (2015). Mitochondrial dysfunction in primary human fibroblasts triggers an adaptive cell survival program that requires AMPK-α. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1852(3), 529–540. https://doi.org/10.1016/j.bbadis.2014.12.012.
Article
CAS
Google Scholar
Dombi, E., Diot, A., Morten, K., Carver, J., Lodge, T., Fratter, C., et al. (2016). The m.13051G> A mitochondrial DNA mutation results in variable neurology and activated mitophagy. Neurology, 86(20), 1921–1923. https://doi.org/10.1212/WNL.0000000000002688.
Article
PubMed
PubMed Central
Google Scholar
Graham, S. F., Kumar, P. K., Bjorndahl, T., Han, B., Yilmaz, A., Sherman, E., et al. (2016). Metabolic signatures of Huntington’s disease (HD): (1)H NMR analysis of the polar metabolome in post-mortem human brain. Biochimica et Biophysica Acta, 1862(9), 1675–1684. https://doi.org/10.1016/j.bbadis.2016.06.007.
Article
PubMed
CAS
Google Scholar
He, Q., Wang, M., Petucci, C., Gardell, S. J., & Han, X. (2013). Rotenone induces reductive stress and triacylglycerol deposition in C2C12 cells. The International Journal of Biochemistry & Cell Biology, 45(12), 2749–2755. https://doi.org/10.1016/j.biocel.2013.09.011.
Article
CAS
Google Scholar
Janzer, A., German, N. J., Gonzalez-Herrera, K. N., Asara, J. M., Haigis, M. C., & Struhl, K. (2014). Metformin and phenformin deplete tricarboxylic acid cycle and glycolytic intermediates during cell transformation and NTPs in cancer stem cells. Proceedings of the National Academy of Sciences of the United States of America, 111(29), 10574–10579. https://doi.org/10.1073/pnas.1409844111.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kirches, E. (2011). LHON: Mitochondrial mutations and more. Current Genomics, 12(1), 44–54. https://doi.org/10.2174/138920211794520150.
Article
PubMed
PubMed Central
CAS
Google Scholar
Leong, D. W., Komen, J. C., Hewitt, C. A., Arnaud, E., McKenzie, M., Phipson, B., et al. (2012). Proteomic and metabolomic analyses of mitochondrial complex I-deficient mouse model generated by spontaneous B2 short interspersed nuclear element (SINE) insertion into NADH dehydrogenase (ubiquinone) Fe-S protein 4 (Ndufs4) gene. The Journal of Biological Chemistry, 287(24), 20652–20663. https://doi.org/10.1074/jbc.M111.327601.
Article
PubMed
PubMed Central
CAS
Google Scholar
Loiseau, D., Chevrollier, A., Verny, C., Guillet, V., Gueguen, N., Pou de Crescenzo, M.-A., et al. (2007). Mitochondrial coupling defect in Charcot-Marie-Tooth type 2A disease. Annals of Neurology, 61(4), 315–323. https://doi.org/10.1002/ana.21086.
Article
PubMed
CAS
Google Scholar
Lopes Costa, A., Le Bachelier, C., Mathieu, L., Rotig, A., Boneh, A., De Lonlay, P., et al. (2014). Beneficial effects of resveratrol on respiratory chain defects in patients’ fibroblasts involve estrogen receptor and estrogen-related receptor alpha signaling. Human Molecular Genetics, 23(8), 2106–2119. https://doi.org/10.1093/hmg/ddt603.
Article
PubMed
CAS
Google Scholar
Massimi, M., Tomassini, A., Sciubba, F., Sobolev, A. P., Devirgiliis, L. C., & Miccheli, A. (2012). Effects of resveratrol on HepG2 cells as revealed by 1H-NMR based metabolic profiling. Biochimica et Biophysica Acta (BBA) - General Subjects, 1820(1), 1–8. https://doi.org/10.1016/j.bbagen.2011.10.005.
Article
CAS
Google Scholar
Mathieu, L., Costa, A. L., Le Bachelier, C., Slama, A., Lebre, A.-S., Taylor, R. W., et al. (2016). Resveratrol attenuates oxidative stress in mitochondrial Complex I deficiency: Involvement of SIRT3. Free Radical Biology & Medicine, 96, 190–198. https://doi.org/10.1016/j.freeradbiomed.2016.04.027.
Article
CAS
Google Scholar
Mimaki, M., Wang, X., McKenzie, M., Thorburn, D. R., & Ryan, M. T. (2012). Understanding mitochondrial complex I assembly in health and disease. Biochimica et Biophysica Acta, 1817(6), 851–862. https://doi.org/10.1016/j.bbabio.2011.08.010.
Article
PubMed
CAS
Google Scholar
Morgan, P. G., Higdon, R., Kolker, N., Bauman, A. T., Ilkayeva, O., Newgard, C. B., et al. (2015). Comparison of proteomic and metabolomic profiles of mutants of the mitochondrial respiratory chain in Caenorhabditis elegans. Mitochondrion, 20, 95–102. https://doi.org/10.1016/j.mito.2014.12.004.
Article
PubMed
CAS
Google Scholar
Worth, A. J., Basu, S. S., Snyder, N. W., Mesaros, C., & Blair, I. A. (2014). Inhibition of neuronal cell mitochondrial complex I with rotenone increases lipid β-oxidation, supporting acetyl-coenzyme A levels. The Journal of Biological Chemistry, 289(39), 26895–26903. https://doi.org/10.1074/jbc.M114.591354.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wu, Y., Li, X., Zhu, J. X., Xie, W., Le, W., Fan, Z., et al. (2011). Resveratrol-activated AMPK/SIRT1/autophagy in cellular models of Parkinson’s disease. Neuro-Signals, 19(3), 163–174. https://doi.org/10.1159/000328516.
Article
PubMed
PubMed Central
CAS
Google Scholar
Xu, Q., Vu, H., Liu, L., Wang, T.-C., & Schaefer, W. H. (2011). Metabolic profiles show specific mitochondrial toxicities in vitro in myotube cells. Journal of Biomolecular NMR, 49(3–4), 207–219. https://doi.org/10.1007/s10858-011-9482-8.
Article
PubMed
CAS
Google Scholar
Zhang, L.-N., Hao, L., Wang, H.-Y., Su, H.-N., Sun, Y.-J., Yang, X.-Y., et al. (2015). Neuroprotective effect of resveratrol against glutamate-induced excitotoxicity. Advances in Clinical and Experimental Medicine: Official Organ Wroclaw Medical University, 24(1), 161–165.
Article
CAS
Google Scholar