Altmaier, E., Fobo, G., Heier, M., Thorand, B., Meisinger, C., Romisch-Margl, W., et al. (2014). Metabolomics approach reveals effects of antihypertensives and lipid-lowering drugs on the human metabolism. European Journal of Epidemiology, 29(5), 325–336. https://doi.org/10.1007/s10654-014-9910-7.
CAS
Article
PubMed
PubMed Central
Google Scholar
Barber, M. N., Risis, S., Yang, C., Meikle, P. J., Staples, M., Febbraio, M. A., et al. (2012). Plasma lysophosphatidylcholine levels are reduced in obesity and type 2 diabetes. PLoS ONE, 7(7), e41456. https://doi.org/10.1371/journal.pone.0041456.
CAS
Article
PubMed
PubMed Central
Google Scholar
Committee for Medicinal Products for Human Use (CHMP). (2011). Guideline on bioanalytical method validation. EMEA/CHMP/EWP/192217/2009 Rev. 1 Corr. 2. London: Committee for Medicinal Products for Human Use (CHMP).
Google Scholar
de Mutsert, R., den Heijer, M., Rabelink, T. J., Smit, J. W., Romijn, J. A., Jukema, J. W., et al. (2013). The Netherlands Epidemiology of Obesity (NEO) study: Study design and data collection. European Journal of Epidemiology, 28(6), 513–523. https://doi.org/10.1007/s10654-013-9801-3.
Article
PubMed
Google Scholar
Dunkley, A. J., Bodicoat, D. H., Greaves, C. J., Russell, C., Yates, T., Davies, M. J., et al. (2014). Diabetes prevention in the real world: Effectiveness of pragmatic lifestyle interventions for the prevention of type 2 diabetes and of the impact of adherence to guideline recommendations: A systematic review and meta-analysis. Diabetes Care, 37(4), 922–933. https://doi.org/10.2337/dc13-2195.
Article
PubMed
Google Scholar
Floegel, A., Stefan, N., Yu, Z., Muhlenbruch, K., Drogan, D., Joost, H. G., et al. (2013). Identification of serum metabolites associated with risk of type 2 diabetes using a targeted metabolomic approach. Diabetes, 62(2), 639–648. https://doi.org/10.2337/db12-0495.
CAS
Article
PubMed
PubMed Central
Google Scholar
Friedman, J., Hastie, T., & Tibshirani, R. (2010). Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software, 33(1), 1–22.
Article
PubMed
PubMed Central
Google Scholar
Kolberg, J. A., Jorgensen, T., Gerwien, R. W., Hamren, S., McKenna, M. P., Moler, E., et al. (2009). Development of a type 2 diabetes risk model from a panel of serum biomarkers from the Inter99 cohort. Diabetes Care, 32(7), 1207–1212. https://doi.org/10.2337/dc08-1935.
Article
PubMed
PubMed Central
Google Scholar
Krug, S., Kastenmuller, G., Stuckler, F., Rist, M. J., Skurk, T., Sailer, M., et al. (2012). The dynamic range of the human metabolome revealed by challenges. FASEB Journal, 26(6), 2607–2619. https://doi.org/10.1096/fj.11-198093.
CAS
Article
PubMed
Google Scholar
Mathew, S., Krug, S., Skurk, T., Halama, A., Stank, A., Artati, A., et al. (2014). Metabolomics of Ramadan fasting: An opportunity for the controlled study of physiological responses to food intake. Journal of Translation Medicine, 12, 161. https://doi.org/10.1186/1479-5876-12-161.
Article
Google Scholar
Mihalik, S. J., Goodpaster, B. H., Kelley, D. E., Chace, D. H., Vockley, J., Toledo, F. G., et al. (2010). Increased levels of plasma acylcarnitines in obesity and type 2 diabetes and identification of a marker of glucolipotoxicity. Obesity, 18(9), 1695–1700. https://doi.org/10.1038/oby.2009.510.
CAS
Article
PubMed
PubMed Central
Google Scholar
Nathan, D. M., Davidson, M. B., DeFronzo, R. A., Heine, R. J., Henry, R. R., Pratley, R., et al. (2007). Impaired fasting glucose and impaired glucose tolerance: Implications for care. Diabetes Care, 30(3), 753–759. https://doi.org/10.2337/dc07-9920.
CAS
Article
PubMed
Google Scholar
Renner, S., Romisch-Margl, W., Prehn, C., Krebs, S., Adamski, J., Goke, B., et al. (2012). Changing metabolic signatures of amino acids and lipids during the prediabetic period in a pig model with impaired incretin function and reduced beta-cell mass. Diabetes, 61(8), 2166–2175. https://doi.org/10.2337/db11-1133.
CAS
Article
PubMed
PubMed Central
Google Scholar
Romisch-Margl, W., Prehn, C., Bogumil, R., Rohring, C., Suhre, K., & Adamski, J. (2012). Procedure for tissue sample preparation and metabolite extraction for high-throughput targeted metabolomics. Metabolomics, 8(1), 133–142. https://doi.org/10.1007/s11306-011-0293-4.
Article
Google Scholar
Schooneman, M. G., Vaz, F. M., Houten, S. M., & Soeters, M. R. (2013). Acylcarnitines: Reflecting or inflicting insulin resistance? Diabetes, 62(1), 1–8. https://doi.org/10.2337/db12-0466.
CAS
Article
PubMed
Google Scholar
Urdea, M., Kolberg, J., Wilber, J., Gerwien, R., Moler, E., Rowe, M., et al. (2009). Validation of a multimarker model for assessing risk of type 2 diabetes from a five-year prospective study of 6784 Danish people (Inter99). Journal of Diabetes Science and Technology, 3(4), 748–755.
Article
PubMed
PubMed Central
Google Scholar
van Diepen, M., Ramspek, C. L., Jager, K. J., Zoccali, C., & Dekker, F. W. (2017). Prediction versus aetiology: Common pitfalls and how to avoid them. Nephrology Dialysis Transplantation, 32, 1–5. https://doi.org/10.1093/ndt/gfw459.
Article
Google Scholar
Wang, T. J., Larson, M. G., Vasan, R. S., Cheng, S., Rhee, E. P., McCabe, E., et al. (2011). Metabolite profiles and the risk of developing diabetes. Nature Medicine, 17(4), 448–453. https://doi.org/10.1038/nm.2307.
Article
PubMed
PubMed Central
Google Scholar
Wang-Sattler, R., Yu, Z., Herder, C., Messias, A. C., Floegel, A., He, Y., et al. (2012). Novel biomarkers for pre-diabetes identified by metabolomics. Molecular Systems Biology, 8, 615. https://doi.org/10.1038/msb.2012.43.
Article
PubMed
PubMed Central
Google Scholar
World Health Organization/International Diabetes Federation. (2006). Definition and diagnosis of diabetes mellitus and intermediate hyperglycemia .Geneva: World Health Organization/International Diabetes Federation.
Google Scholar