Skip to main content
Log in

Metabolic heterogeneity of the normal human brain: multivariate analysis of 1H MRS in vivo spectra acquired at 3T

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Introduction

In recent years multivariate projection techniques of data analysis (PCA, PLS-DA) have been increasingly used for detection of complex 1H MRS derived metabolic signatures in pathologic conditions. However, these techniques have not been applied in the studies of metabolic heterogeneity of the normal human brain.

Objective

In this work we extended current knowledge about regional distribution of metabolites by multivariate analysis of metabolite levels obtained from various cortical and subcortical regions.

Methods

The studied group consisted of 71 volunteers with no neurological disorders. The metabolite levels obtained from short echo time 1H MRS in vivo spectra were subjected to univariate and multivariate analysis.

Results

The major variance direction in the dataset was dominated by glutamine + glutamate, creatine, myo-inositol and was successful in differentiation of the cortical grey matter and cerebellar vermis from the cortical white matter, pons, basal ganglia, hippocampus and thalamus. The projection plane formed by the second and third variance directions was dominated by N-acetylaspartate + N-acetylaspartylglutamate, choline and glutamine + glutamate variation not explained by the first direction. This plane revealed a huge metabolic contrast between the pons and basal ganglia, differentiation between the cortical grey matter regions and cerebellar vermis as well as biochemical heterogeneity between the regions such as: thalamus, basal ganglia and hippocampus.

Conclusion

Multivariate approach to 1H MRS data analysis provides an insight into the normal brain biochemistry and is helpful in understanding the regional heterogeneity of the normal brain. Such knowledge is crucial for a proper interpretation of altered metabolic pathways in diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arnold, S. E., & Trojanowski, J. Q. (1996). Human fetal hippocampal development: I. cytoarchitecture, myeloarchitecture, and neuronal morphologic features. Journal of Comparative Neurology, 376, 274–292.

    Article  Google Scholar 

  • Baker, E. H., Basso, G., Barker, P. B., Smith, M. A., Bonekamp, D., & Horská, A. (2008). Regional apparent metabolite concentrations in young adult brain measured by (1)H MR spectroscopy at 3 T. Journal of Magnetic Resonance Imaging, 27, 489–499.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bracken, B. K., Jensen, J. E., Prescot, A. P., Cohen, B. M., Renshaw, P. F., & Ongür, D. (2011). Brain metabolite concentrations across cortical regions in healthy adults. Brain Research, 1369, 89–94.

    Article  CAS  PubMed  Google Scholar 

  • Brand, A., Richter-Landsberg, C., & Leibfritz, D. (1993). Multinuclear NMR studies on the energy metabolism of glial and neuronal cells. Developmental Neuroscience, 15, 289–298.

    Article  CAS  PubMed  Google Scholar 

  • Choi, C. G., & Frahm, J. (1999). Localized proton MRS of the human hippocampus: metabolite concentrations and relaxation times. Magnetic Resonance in Medicine, 41(1), 204–207.

    Article  CAS  PubMed  Google Scholar 

  • Emir, U. E., Auerbach, E. J., Van De Moortele, P. F., Marjañska, M., Uğurbil, K., Terpstra, M., et al. (2012). Regional neurochemical profiles in the human brain measured by ¹H MRS at 7 T using local B1 shimming. NMR in Biomedicine, 25, 152–160.

    Article  CAS  PubMed  Google Scholar 

  • Fauvelle, F., Boccard, J., Cavarec, F., Depaulis, A., & Deransart, C. (2015) Assessing susceptibility to epilepsy in three rat strains using brain metabolic profiling based on HRMAS NMR spectroscopy and chemometrics. Journal of Proteome Research, 14, 2177–2189.

    Article  CAS  PubMed  Google Scholar 

  • Ganji, S. K., An, Z., Banerjee, A., Madan, A., Hulsey, K. M., & Choi, C. (2014). Measurement of regional variation of GABA in the human brain by optimized point-resolved spectroscopy at 7 T in vivo. NMR in Biomedicine, 27, 1167–1175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gasparovic, C., Bedrick, E. J., Mayer, A. R., Yeo, R. A., Chen, H., Damaraju, E., et al. (2011). Test-retest reliability and reproducibility of short-echo-time spectroscopic imaging of human brain at 3 T. Magnetic Resonance in Medicine, 66, 324–332.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gasparovic, C., Song, T., Devier, D., Bockholt, H. J., Caprihan, A., Mullins, P. G., et al. (2006). Use of tissue water as a concentration reference for proton spectroscopic imaging. Magnetic Resonance in Medicine, 55, 1219–1226.

    Article  CAS  PubMed  Google Scholar 

  • Irie, M., Fujimura, Y., Yamato, M., Miura, D., & Wariishi, H. (2014). Integrated MALDI-MS imaging and LC-MS techniques for visualizing spatiotemporal metabolomic dynamics in a rat stroke model. Metabolomics, 10, 473–483.

    Article  CAS  PubMed  Google Scholar 

  • Ivanisevic, J., Epstein, A. A., Kurczy, M. E., Benton, P. H., Uritboonthai, W., Fox, H. S., et al. (2014). Brain region mapping using global metabolomics. Chemistry & Biology, 21, 1575–1584.

    Article  CAS  Google Scholar 

  • Ivanisevic, J., & Siuzdak, G. (2015). The Role of Metabolomics in Brain Metabolism Research. Journal of NeuroImmune Pharmacology, 10, 391–395.

    Article  PubMed  PubMed Central  Google Scholar 

  • Iyo, M., Namba, H., Fukushi, K., Shinotoh, H., Nagatsuka, S., Suhara, T., et al. (1997). Measurement of acetylcholinesterase by positron emission tomography in the brains of healthy controls and patients with Alzheimer’s disease. Lancet, 349, 1805–1809.

    Article  CAS  PubMed  Google Scholar 

  • Jaeger, C., Glaab, E., Michelucci, A., Binz, T. M., Koeglsberger, S., Garcia, P., et al. (2015). The mouse brain metabolome: Region-specific signatures and response to excitotoxic neuronal injury. The American Journal of Pathology, 185, 1699–1712.

    Article  CAS  PubMed  Google Scholar 

  • Jolliffe, I.T. Principal Component Analysis. (2002). 2nd Edn., New York: Springer.

    Google Scholar 

  • Kaldis, P., Hemmer, W., Zanolla, E., Holtzman, D., & Wallimann, T. (1996). ‘Hot spots’ of creatine kinase localization in brain: Cerebellum, hippocampus and choroid plexus. Developmental Neuroscience, 18, 542–554.

    Article  CAS  PubMed  Google Scholar 

  • Keevil, S. F., Barbiroli, B., Brooks, J. C., Cady, E. B., Canese, R., Carlier, P., et al. (1998). Absolute metabolite quantification by in vivo NMR spectroscopy: II. A multicentre trial of protocols for in vivo localised proton studies of human brain. Magnetic Resonance Imaging, 16, 1093–1106.

    Article  CAS  PubMed  Google Scholar 

  • Kreis, R., Boesch, C. (2003) Bad spectra can be better than good spectra. In: Proc 11th Annual Meeting ISMRM, Toronto.

  • McLean, M. A., Woermann, F. G., Barker, G. J., & Duncan, J. S. (2000). Quantitative analysis of short echo time (1)H-MRSI of cerebral gray and white matter. Magnetic Resonance in Medicine, 44, 401–411.

    Article  CAS  PubMed  Google Scholar 

  • Minati, L., Aquino, D., Bruzzone, M. G., & Erbetta, A. (2010). Quantitation of normal metabolite concentrations in six brain regions by in vivo 1 H MR spectroscopy. Journal of Medical Physics, 35, 154–163.

    Article  PubMed  PubMed Central  Google Scholar 

  • Natt, O., Bezkorovaynyy, V., Michaelis, T., & Frahm, J. (2005). Use of phased array coils for a determination of absolute metabolite concentrations. Magnetic Resonance in Medicine, 53, 3–8.

    Article  CAS  PubMed  Google Scholar 

  • Novak, J. E., Turner, R. S., Agranoff, B. W., & Fisher, S. K. (1999). Differentiated human NT2-N neurons possess a high intracellular content of myo-inositol. Journal of Neurochemistry, 72, 1431–1440.

    Article  CAS  PubMed  Google Scholar 

  • Oberg, J., Spenger, C., Wang, F. H., Andersson, A., Westman, E., Skoglund, P., et al. (2008). Age related changes in brain metabolites observed by 1H MRS in APP/PS1 mice. Neurobiology of Aging, 29, 1423–1433.

    Article  CAS  PubMed  Google Scholar 

  • Petroff, O.A.C., Spencer, D. D., Alger, J. R., & Prichard, J. W. (1989). High-field proton magnetic resonance spectroscopy of human cerebrum obtained during surgery for epilepsy. Neurology, 39, 1197–1202.

    Article  CAS  PubMed  Google Scholar 

  • Pouwels, P. J., & Frahm, J. (1998). Regional metabolite concentrations in human brain as determined by quantitative localized proton MRS. Magnetic Resonance in Medicine, 39, 53–60.

    Article  CAS  PubMed  Google Scholar 

  • Provencher, S. W. (2001). Automatic quantitation of localized in vivo 1 H spectra with LCModel. NMR in Biomedicine, 14, 260–264.

    Article  CAS  PubMed  Google Scholar 

  • Qian, J., Qian, B., & Lei, H. (2013). Reversible loss of N-acetylaspartate after 15-min transient middle cerebral artery occlusion in rat: A longitudinal study with in vivo proton magnetic resonance spectroscopy. Neurochemical Research, 38, 208–217.

    Article  CAS  PubMed  Google Scholar 

  • Rae, C. D. (2014). A guide to the metabolic pathways and function of metabolites observed in human brain 1 H magnetic resonance spectra. Neurochemical Research, 39, 1–36.

    Article  CAS  PubMed  Google Scholar 

  • Raininko, R., & Mattsson, P. (2010). Metabolite concentrations in supraventricular white matter from teenage to early old age: A short echo time 1 H magnetic resonance spectroscopy (MRS) study. (2010). Acta Radiologica, 51, 309–315.

    Article  PubMed  Google Scholar 

  • Righi, V., Roda, J. M., Paz, J., Mucci, A., Tugnoli, V., Rodriguez-Tarduchy, G., et al. (2009). 1 H HR-MAS and genomic analysis of human tumor biopsies discriminate between high and low grade astrocytomas. NMR in Biomedicine, 22(6), 629–637.

    Article  CAS  PubMed  Google Scholar 

  • Sabati, M., Sheriff, S., Gu, M., Wei, J., Zhu, H., Barker, P. B., et al. (2015). Multivendor implementation and comparison of volumetric whole-brain echo-planar MR spectroscopic imaging. Magnetic Resonance in Medicine, 74, 1209–1220.

    Article  CAS  PubMed  Google Scholar 

  • Savchenko, V. L., Nikonenko, I. R., Skibo, G. G., & McKanna, J. A. (1997). Distribution of microglia and astrocytes in different regions of the normal adult rat brain. Neurophysiology, 29, 431–441.

    Google Scholar 

  • Skorupa, A., Jamroz, E., Paprocka, J., Sokół, M., Wicher, M., & Kiełtyka, A. (2013). Bridging the gap between metabolic profile determination and visualization in neurometabolic disorders: A multivariate analysis of proton magnetic resonance in vivo spectra. Journal of Chemometrics, 27, 76–90.

    Article  CAS  Google Scholar 

  • Smith, I.C.P., & Somorjai, R. L. (2011). Deriving biomedical diagnostics from NMR spectroscopic data. Biophysical Reviews, 3, 47–52.

    Article  Google Scholar 

  • Soares, D. P., & Law, M. (2009). Magnetic resonance spectroscopy of the brain: review of metabolites and clinical applications. Clinical Radiology, 64, 12–21.

    Article  CAS  PubMed  Google Scholar 

  • Tsang, T. M., Griffin, J. L., Haselden, J., Fish, C., & Holmes, E. (2005). Metabolic characterization of distinct neuroanatomical regions in rats by magic angle spinning 1 H nuclear magnetic resonance spectroscopy. Magnetic Resonance in Medicine, 53, 1018–1024.

    Article  CAS  PubMed  Google Scholar 

  • Urenjak, J., Williams, S. R., Gadian, D. G., & Noble, M. (1993). Proton nuclear magnetic resonance spectroscopy unambiguously identifies different neural cell types. Journal of Neuroscience, 13, 981–989.

    CAS  PubMed  Google Scholar 

  • van der Veen, J. W., & Shen, J. (2013). Regional difference in GABA levels between medial prefrontal and occipital cortices. Journal of Magnetic Resonance Imaging, 38, 745–750.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vingara, L. K., Yu, H. J., Wagshul, M. E., Serafin, D., Christodoulou, C., Pelczer, I., et al. (2013). Metabolomic approach to human brain spectroscopy identifies associations between clinical features and the frontal lobe metabolome in multiple sclerosis. NeuroImage, 82, 586–594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Westman, E., Spenger, C., Oberg, J., Reyer, H., Pahnke, J., & Wahlund, L. O. (2009). In vivo 1 H-magnetic resonance spectroscopy can detect metabolic changes in APP/PS1 mice after donepezil treatment. BMC Neuroscience, 10, 33.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wiedermann, D., Schuff, N., Matson, G. B., Soher, B. J., Du, A. T., Maudsley, A. A., & Weiner, M. W. (2001). Short echo time multislice proton magnetic resonance spectroscopic imaging in human brain: Metabolite distributions and reliability. Magnetic Resonance Imaging, 19, 1073–1080.

    Article  CAS  PubMed  Google Scholar 

  • Wright, A. J., Fellows, G. A., Griffiths, J. R., Wilson, M., Bell, B. A., & Howe, F. A. (2010). Ex-vivo HRMAS of adult brain tumours: Metabolite quantification and assignment of tumour biomarkers. Molecular Cancer, 23, 9–66.

    Google Scholar 

  • Zhang, Y., & Shen, J. (2015). Regional and tissue-specific differences in brain glutamate concentration measured by in vivo single voxel MRS. Journal of Neuroscience Methods, 239, 94–99.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Nia Goulden and Dr. Paul Mullins (Bangor University, United Kingdom) for making Partial Volume Correction Tool available for use in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agnieszka Skorupa.

Ethics declarations

Conflict of interest

Agnieszka Skorupa, Łukasz Boguszewicz, Marek Kijonka, Maria Sokół declare no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 13555 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skorupa, A., Boguszewicz, Ł., Kijonka, M. et al. Metabolic heterogeneity of the normal human brain: multivariate analysis of 1H MRS in vivo spectra acquired at 3T. Metabolomics 13, 34 (2017). https://doi.org/10.1007/s11306-017-1171-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11306-017-1171-5

Keywords

Navigation