Skip to main content
Log in

Deriving biomedical diagnostics from NMR spectroscopic data

  • Review
  • Published:
Biophysical Reviews Aims and scope Submit manuscript

Abstract

Biomedical spectroscopic experiments generate large volumes of data. For accurate, robust diagnostic tools the data must be analyzed for only a few characteristic observations per subject, and a large number of subjects must be studied. We describe here two of the current data analytic approaches applied to this problem: SIMCA (principal component analysis, partial least squares), and the statistical classification strategy (SCS). We demonstrate the application of the SCS by three examples of its use in analyzing 1H NMR spectra: screening for colon cancer, characterization of thyroid cancer, and distinguishing cancer from cholangitis in the biliary tract.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

FLD:

Fisher’s linear discriminant

FOBT:

Fecal occult blood test

NMR:

Nuclear magnetic resonance

PC:

Principal component

PCA:

Principal component analysis

PCR:

Principal component regression

PLS:

Partial least squares

PSC:

Primary sclerosing cholangitis

SCS:

Statistical classification strategy

SIMCA:

Soft independent modelling of class analogies

WCVBST:

Weighted cross validated bootstrap

References

  • Albiin N, Smith ICP, Arnelo V, Lindberg B, Berquist A, Dolenko B, Bryksina N, Bezabeh T (2008) A detection of cholangiocarcinoma with magnetic resonance spectroscopy of bile in patients with and without primary sclerosing cholangitis. Acta Radiol 49:855–862

    Article  PubMed  CAS  Google Scholar 

  • Bezabeh T, Somorjai RL, Dolenko B, Bryskina N, Levin B, Bernstein CN, Jeyrajah E, Steinhart AH, Rubin D, Smith ICP (2009) Detecting colorectal cancer by 1H magnetic resonance spectroscopy of fecal extracts. NMR Biomed 22:593–600

    Article  PubMed  CAS  Google Scholar 

  • Duda RO, Hart PE, Stork DG (2001) Pattern classification, 2nd edn. Wiley-Interscience, New York

    Google Scholar 

  • Eriksson L, Johansson E, Kettaneh-Wold N, Wold S (2001) Multi- and megavariate data analysis—principles and applications. Umetrics, Umea

  • Hastie T, Tibshirani R, Friedman J (2009) The elements of statistical learning: data mining, inference and prediction, 2nd edn. Springer, Berlin

  • Huber PJ (1985) Projection pursuit. Ann Stat 13:435–475

    Article  Google Scholar 

  • Kuncheva LI (2004) Combining instance classifiers—methods and algorithms. Wiley-Interscience, New York

  • Nikulin AE, Dolenko B, Bezabeh T, Somorjai RL (1998) Near-optimal region selection for feature space reduction: novel preprocessing methods for classifying MR spectra. NMR Biomed 11:209–217

    Article  PubMed  CAS  Google Scholar 

  • Somorjai RL (2009) Creating robust, reliable, clinically relevant classifiers from spectroscopic data. Biophys Rev 1:201–211

    Article  Google Scholar 

  • Somorjai RL, Nikulin AE, Pizzi N, Jackson D, Scarth G, Dolenko B, Gordon H, Russell P, Lean CL, Delbridge L, Mountford CE, Smith ICP (1995) Computerized consensus diagnosis: a classification strategy for the robust analysis of NMR spectra. I. Application to thyroid neoplasms. Magn Res Med 33:257–263

    Article  CAS  Google Scholar 

  • Somorjai RL, Alexander M, Baumgartner R, Booth S, Bowman C, Demko A, Dolenko B, Mandelzweig M, Nikulin AE, Pizzi N, Prankeviciene E, Summers R, Zhilkin P (2004a) A data-driven, flexible machine learning strategy for the classification of biomedical data. In: Dubitzky W, Azuaje F (eds) Artificial intelligence methods and tools for systems biology. Computational biology series, vol. 5. Springer, New York, pp 67–85

  • Somorjai RL, Demko A, Mandelzweig M, Dolenko B, Nikulin AE, Baumgartner R, Pizzi N (2004b) Mapping high-dimensional data onto a relative distance plane—a novel, exact method for visualizing and characterizing high-dimensional instances. J Biomed Inform 37:366–379

    Article  PubMed  CAS  Google Scholar 

  • Witten IH, Frank E (2005) Data mining: practical machine learning tools and techniques, 2nd edn. Morgan Kaufmann, San Francisco

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian C. P. Smith.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, I.C.P., Somorjai, R.L. Deriving biomedical diagnostics from NMR spectroscopic data. Biophys Rev 3, 47–52 (2011). https://doi.org/10.1007/s12551-011-0045-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12551-011-0045-8

Keywords

Navigation