Skip to main content
Log in

Chemogeography of the red macroalgae Asparagopsis: metabolomics, bioactivity, and relation to invasiveness

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Introduction

The Latitudinal Gradient Hypothesis (LGH) foresees that specialized metabolites are overexpressed under low latitudes, where organisms are subjected to higher herbivory pressure. The widespread macroalga Asparagopsis taxiformis is composed of six distinct genetic lineages, some of them being introduced in many regions.

Objectives

To study (i) metabolic fingerprints of the macroalga and (ii) its bioactivity in space and time, both as proxies of its investment in defensive traits, in order to assess links between bioactivities and metabotypes with macroalgal invasiveness.

Methods

289 macroalgal individuals, from four tropical and three temperate regions, were analyzed using untargeted metabolomics and the standardized Microtox® assay.

Results

Metabotypes showed a low divergence between tropical and temperate populations, while bioactivities were higher in temperate populations. However, these phenotypes varied significantly in time, with a higher variability in tropical regions. Bioactivities were high and stable in temperate regions, whereas they were low and much variable in tropical regions. Although the introduced lineage two exhibited the highest bioactivities, this lineage could also present variable proliferation fates.

Conclusion

The metabolomic approach partly discriminates macroalgal populations from various geographic origins. The production of chemical defenses assessed by the bioactivity assay does not match the macroalgal genetic lineage and seems more driven by the environment. The higher content of chemical defenses in temperate versus tropical populations is not in accordance with the LGH and cannot be related to the invasiveness of the macroalgae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adams, J. M., Rehill, B., Zhang, Y., & Gower, J. (2008). A test of the latitudinal defense hypothesis: Herbivory, tannins and total phenolics in four North American tree species. Ecological Research, 24, 697–704. doi:10.1007/s11284-008-0541-x.

    Article  Google Scholar 

  • Altamirano, M., de la Rosa, J., Zanolla, M., Souza-Egipsy, V., & Diaz, J. (2010). New records for the benthic marine flora of Chafarinas Islands (Alboran Sea, Western Mediterranean). Acta Botanica Malacitana, 35, 165–167.

    Google Scholar 

  • Altamirano, M., Muñoz, A. R., de la Rosa, J., Barrajón-Minguez, A., Barrajón-Domenech, A., Moreno-Robledo, C., et al. (2008). The invasive species Asparagopsis taxiformis (Bonnemaisoniales, Rhodophyta) on Andalusian coasts (Southern Spain): Reproductive stages, new records and invaded communities. Acta Botanica Malacitana, 33, 5–15.

    Google Scholar 

  • Andreakis, N., Costello, P., Zanolla, M., Saunders, G. W., & Mata, L. (2016). Endemic or introduced? Phylogeography of Asparagopsis (Florideophyceae) in Australia reveals multiple introductions and a new mitochondrial lineage. Journal of Phycology, 52, 141–147. doi:10.1111/jpy.12373.

    Article  CAS  PubMed  Google Scholar 

  • Andreakis, N., Kooistra, W. H. C. F., & Procaccini, G. (2009). High genetic diversity and connectivity in the polyploid invasive seaweed Asparagopsis taxiformis (Bonnemaisoniales) in the Mediterranean, explored with microsatellite alleles and multilocus genotypes. Molecular Ecology, 18, 212–226. doi:10.1111/j.1365-294X.2008.04022.x.

    Article  PubMed  Google Scholar 

  • Andreakis, N., Procaccini, G., & Kooistra, W. (2004). Asparagopsis taxiformis and Asparagopsis armata (Bonnemaisoniales, Rhodophyta): Genetic and morphological identification of Mediterranean populations. European Journal of Phycology, 39, 273–283. doi:10.1080/0967026042000236436.

    Article  CAS  Google Scholar 

  • Andreakis, N., Procaccini, G., Maggs, C., & Kooistra, W. H. C. F. (2007). Phylogeography of the invasive seaweed Asparagopsis (Bonnemaisoniales, Rhodophyta) reveals cryptic diversity. Molecular Ecology, 16, 2285–2299. doi:10.1111/j.1365-294X.2007.03306.x.

    Article  CAS  PubMed  Google Scholar 

  • Andrew, N. R., & Hughes, L. (2005). Herbivore damage along a latitudinal gradient: relative impacts of different feeding guilds. Oikos, 108, 176–182. doi:10.1111/j.0030-1299.2005.13457.x.

    Article  Google Scholar 

  • Bolser, R. C., & Hay, M. E. (1996). Are tropical plants better defended? Palatability and defenses of temperate vs. tropical seaweeds. Ecology, 77, 2269–2286. doi:10.2307/2265730.

    Article  Google Scholar 

  • Botsford, J. L. (2002). A comparison of ecotoxicological tests. Atla-Alternatives to Laboratory Animals, 30, 539–550.

    CAS  Google Scholar 

  • Boudouresque, C. F. (2008). Les espèces introduites et invasives en milieu marin, 3 edn. Marseille, France, GIS Posidonie Publisher.

    Google Scholar 

  • Brown, J. H. (2014). Why are there so many species in the tropics? Journal of Biogeography, 41, 8–22. doi:10.1111/jbi.12228.

    Article  PubMed  Google Scholar 

  • Cachet, N., Genta-Jouve, G., Ivanisevic, J., Chevaldonné, P., Sinniger, F., Culioli, G., et al. (2015). Metabolomic profiling reveals deep chemical divergence between two morphotypes of the zoanthid Parazoanthus axinellae. Scientific Reports, 5, 8282. doi:10.1038/srep08282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Callaway, R. M., & Ridenour, W. M. (2004). Novel weapons: invasive success and the evolution of increased competitive ability. Frontiers in Ecology and the Environment, 2, 436–443. doi:10.1890/1540-9295(2004)002[0436:nwisat]2.0.co;2.

    Article  Google Scholar 

  • Cardigos, F., Tempera, F., Ávila, S., Gonçalves, J., Colaço, A., & Santos, R. S. (2006). Non-indigenous marine species of the Azores. Helgoland Marine Research, 60, 160–169. doi:10.1007/s10152-006-0034-7.

    Article  Google Scholar 

  • Chainho, P., Fernandes, A., Amorim, A., Ávila, S. P., Canning-Clode, J., Castro, J. J., et al. (2015). Non-indigenous species in Portuguese coastal areas, coastal lagoons, estuaries and islands. Estuarine, Coastal and Shelf Science, 167, Part A, 199–211. doi:10.1016/j.ecss.2015.06.019.

    Article  Google Scholar 

  • Coley, P. D. & Aide, T. M. (1991). Comparison of herbivory and plant defenses in temperate and tropical broad-leaved forests. In: Price, P. W., Lewinsohn, T. M., Fernandes, G. W., Benson, W. W. (eds) Plant–animal interactions: Evolutionary ecology in tropical and temperate regions. (pp25–49). John Wiley & Sons.

  • Coley, P. D., & Barone, J. A. (1996). Herbivory and plant defenses in tropical forests. Annual Review of Ecology & Systematics, 27, 305–335. doi:10.1146/annurev.ecolsys.27.1.305.

    Article  Google Scholar 

  • Craft, J. D., Paul, V. J., & Sotka, E. E. (2013). Biogeographic and phylogenetic effects on feeding resistance of generalist herbivores toward plant chemical defenses. Ecology, 94, 18–24. doi:10.1890/11-0873.1.

    Article  PubMed  Google Scholar 

  • Cronin, G., & Hay, M. E. (1996). Effects of light and nutrient availability on the growth, secondary chemistry, and resistance to herbivory of two brown seaweeds. Oikos, 77, 93–106. doi:10.2307/3545589.

    Article  CAS  Google Scholar 

  • del-Val, E., & Armesto, J. J. (2010). Seedling mortality and herbivory damage in subtropical and temperate populations: Testing the hypothesis of higher herbivore pressure toward the tropics. Biotropica, 42, 174–179. doi:10.1111/j.1744-7429.2009.00554.x.

    Article  Google Scholar 

  • Deneb, K. (2001). Chemical defenses of marine organisms against solar radiation exposure Marine Chemical Ecology. Marine Science. (pp481–520). Boca Raton:CRC Press.

  • Dijoux, L. (2014). La diversité des algues rouges du genre Asparagopsis en Nouvelle-Calédonie : approches in situ et moléculaires., Université Pierre et Marie Curie.

  • Dijoux, L., Viard, F., & Payri, C. (2014). The more we search, the more we find: discovery of a new lineage and a new species complex in the genus Asparagopsis. PLoS One, 9, e103826. doi:10.1371/journal.pone.0103826.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dray, S., & Dufour, A. B. (2007). The ade4 package: implementing the duality diagram for ecologists. Journal of Statistical Software, 22, 1–20.

    Article  Google Scholar 

  • Ejigu, B. A., Valkenborg, D., Baggerman, G., Vanaerschot, M., Witters, E., Dujardin, J. C., et al. (2013). Evaluation of normalization methods to pave the way towards large-scale LC-MS-based metabolomics profiling experiments. Omics-a Journal of Integrative Biology, 17, 473–485. doi:10.1089/omi.2013.0010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Genovese, G., Faggio, C., Gugliandolo, C., Torre, A., Spano, A., Morabito, M., et al. (2012). In vitro evaluation of antibacterial activity of Asparagopsis taxiformis from the Straits of Messina against pathogens relevant in aquaculture. Marine Environmental Research, 73, 1–6. doi:10.1016/j.marenvres.2011.10.002.

    Article  CAS  PubMed  Google Scholar 

  • González-Bergonzoni, I., Meerhoff, M., Davidson, T., Teixeira-de Mello, F., Baattrup-Pedersen, A., & Jeppesen, E. (2012). Meta-analysis shows a consistent and strong latitudinal pattern in fish omnivory across ecosystems. Ecosystems, 15, 492–503. doi:10.1007/s10021-012-9524-4.

    Article  Google Scholar 

  • Greff, S., Zubia, M., Genta-Jouve, G., Massi, L., Perez, T., & Thomas, O. P. (2014). Mahorones, highly brominated cyclopentenones from the red alga Asparagopsis taxiformis. Journal of Natural Products, 77, 1150–1155. doi:10.1021/np401094h.

    Article  CAS  PubMed  Google Scholar 

  • Hervé, M. (2016). RVAideMemoire: Diverse Basic Statistical and Graphical Functions. R package version 0.9–62. https://CRAN.R-project.org/package=RVAideMemoire.

  • Ivanisevic, J., Perez, T., Ereskovsky, A. V., Barnathan, G., & Thomas, O. P. (2011a). Lysophospholipids in the Mediterranean sponge Oscarella tuberculata: seasonal variability and putative biological role. Journal of Chemical Ecology, 37, 537–545. doi:10.1007/s10886-011-9943-2.

    Article  CAS  PubMed  Google Scholar 

  • Ivanisevic, J., Thomas, O. P., Pedel, L., Pénez, N., Ereskovsky, A. V., Culioli, G., et al. (2011b). Biochemical trade-offs: evidence for ecologically linked secondary metabolism of the sponge Oscarella balibaloi. PLoS One, 6, e28059. doi:10.1371/journal.pone.0028059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson, B. T. (2005). Microtox® acute toxicity test. In: Blaise, C., Férard, J.-F. (eds) Small-scale Freshwater Toxicity Investigations. (pp69–105). Dordrecht:Springer.

  • Keane, R. M., & Crawley, M. J. (2002). Exotic plant invasions and the enemy release hypothesis. Trends in Ecology & Evolution, 17, 164–170. doi:10.1016/s0169-5347(02)02499-0.

    Article  Google Scholar 

  • Kladi, M., Vagias, C., & Roussis, V. (2004). Volatile halogenated metabolites from marine red algae. Phytochemistry Reviews, 3, 337–366. doi:10.1007/s11101-004-4155-9.

    Article  CAS  Google Scholar 

  • Mannion, P. D., Upchurch, P., Benson, R. B. J., & Goswami, A. (2014). The latitudinal biodiversity gradient through deep time. Trends in Ecology & Evolution, 29, 42–50. doi:10.1016/j.tree.2013.09.012.

    Article  Google Scholar 

  • Martí, R., Fontana, A., Uriz, M. J., & Cimino, G. (2003). Quantitative assessment of natural toxicity in sponges: toxicity bioassay versus compound quantification. Journal of Chemical Ecology, 29, 1307–1318. doi:10.1023/a:1024201100811.

    Article  PubMed  Google Scholar 

  • Martí, R., Uriz, M. J., & Turon, X. (2004). Seasonal and spatial variation of species toxicity in Mediterranean seaweed communities: correlation to biotic and abiotic factors. Marine Ecology-Progress Series, 282, 73–85. doi:10.3354/meps282073.

    Article  Google Scholar 

  • Micael, J., Parente, M. I., & Costa, A. C. (2014). Tracking macroalgae introductions in North Atlantic oceanic islands. Helgoland Marine Research, 68, 209–219. doi:10.1007/s10152-014-0382-7.

    Article  Google Scholar 

  • Mineur, F., Arenas, F., Assis, J., Davies, A. J., Engelen, A. H., Fernandes, F., et al. (2015). European seaweeds under pressure: Consequences for communities and ecosystem functioning. Journal of Sea Research, 98, 91–108. doi:10.1016/j.seares.2014.11.004.

    Article  Google Scholar 

  • Moles, A. T. (2013). Dogmatic is problematic: Interpreting evidence for latitudinal gradients in herbivory and defense. Ideas in Ecology and Evolution, 6, 1–4. doi:10.4033/iee.2013.6.1.c.

    Google Scholar 

  • Moles, A. T., & Ollerton, J. (2016). Is the notion that species interactions are stronger and more specialized in the tropics a zombie idea?. Biotropica. doi:10.1111/btp.12281.

    Google Scholar 

  • Monro, K., & Poore, A. G. B. (2009). The evolvability of growth form in a clonal seaweed. Evolution, 63, 3147–3157. doi:10.1111/j.1558-5646.2009.00802.x.

    Article  PubMed  Google Scholar 

  • Mtolera, M. S. P., Collén, J., Pedersén, M., Ekdahl, A., Abrahamsson, K., & Semesi, A. K. (1996). Stress-induced production of volatile halogenated organic compounds in Eucheuma denticulatum (Rhodophyta) caused by elevated pH and high light intensities. European Journal of Phycology, 31, 89–95. doi:10.1080/09670269600651241.

    Article  Google Scholar 

  • Nylund, G. M., Weinberger, F., Rempt, M., & Pohnert, G. (2011). Metabolomic assessment of induced and activated chemical defence in the invasive red alga Gracilaria vermiculophylla. PLoS One, 6, e29359. doi:10.1371/journal.pone.0029359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O’Hara, R. B., et al. (2015). vegan: community ecology package. R package version 2.3–0. http://CRAN.R-project.org/package=vegan.

  • Padilla-Gamino, J. L., & Carpenter, R. C. (2007). Seasonal acclimatization of Asparagopsis taxiformis (Rhodophyta) from different biogeographic regions. Limnology and Oceanography, 52, 833–842. doi:10.4319/lo.2007.52.2.0833.

    Article  Google Scholar 

  • Patti, G. J., Tautenhahn, R., & Siuzdak, G. (2012). Meta-analysis of untargeted metabolomic data from multiple profiling experiments. Nature Protocols, 7, 508–516. doi:10.1038/nprot.2011.454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paul, N. A. (2006). The ecology of chemical defence in a filamentous marine red alga. Sydney:University of New South Wales.

  • Paul, N. A., de Nys, R., & Steinberg, P. D. (2006a). Chemical defence against bacteria in the red alga Asparagopsis armata: linking structure with function. Marine Ecology: Progress Series, 306, 87–101. doi:10.3354/meps306087.

    Article  CAS  Google Scholar 

  • Paul, N. A., de Nys, R., & Steinberg, P. D. (2006b). Seaweed-herbivore interactions at a small scale: direct tests of feeding deterrence by filamentous algae. Marine Ecology Progress Series, 323, 1–9. doi:10.3354/meps323001.

    Article  Google Scholar 

  • Paul, N. A., Svensson, C. J., de Nys, R., & Steinberg, P. D. (2014). Simple growth patterns can create complex trajectories for the ontogeny of constitutive chemical defences in seaweeds. PLoS One, 9, e86893. doi:10.1371/journal.pone.0086893.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pelletreau, K. N. & Targett, N. M. (2008). New perspectives for addressing patterns of secondary metabolites in marine macroalgae. In: Amsler, C. D. (ed) Algal Chemical Ecology. (pp121–146). Berlin: Springer.

    Chapter  Google Scholar 

  • Pinedo, S., Arévalo, R., & Ballesteros, E. (2015). Seasonal dynamics of upper sublittoral assemblages on Mediterranean rocky shores along a eutrophication gradient. Estuarine, Coastal and Shelf Science, 161, 93–101. doi:10.1016/j.ecss.2015.05.004.

    Article  CAS  Google Scholar 

  • Puglisi, M. P., Sneed, J. M., Sharp, K. H., Ritson-Williams, R., & Paul, V. J. (2014). Marine chemical ecology in benthic environments. Natural Product Reports, 31, 1510.

    Article  CAS  PubMed  Google Scholar 

  • Putz, A., & Proksch, P. (2010). Chemical defence in marine ecosystems. Annual Plant Reviews, 39, 162–213. doi:10.1002/9781444318876.ch3.

    CAS  Google Scholar 

  • R_Core_Team (2013). R: A language and environment for statistical computing. In: R Foundation for Statistical Computing. Vienna:R_Core_Team. http://www.R-project.org/.

  • Reverter, M., Perez, T., Ereskovsky, A. V., & Banaigs, B. (2016). Secondary metabolome variability and inducible chemical defenses in the Mediterranean sponge Aplysina cavernicola. Journal of Chemical Ecology, 42, 60–70. doi:10.1007/s10886-015-0664-9.

    Article  CAS  PubMed  Google Scholar 

  • Rogers, C. N., Nys, R. d., & Steinberg, P. D. (2003). Ecology of the sea hare Aplysia parvula (Opisthobranchia) in New South Wales, Australia. Molluscan Research, 23, 185–198. doi:10.1071/MR03004.

    Article  Google Scholar 

  • Schaffelke, B., & Hewitt, C. L. (2007). Impacts of introduced seaweeds. Botanica Marina, 50, 397–417. doi:10.1515/bot.2007.044.

    Article  Google Scholar 

  • Schemske, D. W., Mittelbach, G. G., Cornell, H. V., Sobel, J. M., & Roy, K. (2009). Is there a latitudinal gradient in the importance of biotic interactions? Annual Review of Ecology, Evolution & Systematics, 40, 245. doi:10.1146/annurev.ecolsys.39.110707.173430.

    Article  Google Scholar 

  • Simberloff, D., Martin, J. L., Genovesi, P., Maris, V., Wardle, D. A., Aronson, J., et al. (2013). Impacts of biological invasions: What’s what and the way forward. Trends in Ecology & Evolution, 28, 58–66. doi:10.1016/j.tree.2012.07.013.

    Article  Google Scholar 

  • Smith, C. A., Want, E. J., O’Maille, G., Abagyan, R., & Siuzdak, G. (2006). XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Analytical Chemistry, 78, 779–787. doi:10.1021/ac051437y.

    Article  CAS  PubMed  Google Scholar 

  • Streftaris, N., & Zenetos, A. (2006). Alien marine species in the Mediterranean—the 100 ‘Worst Invasives’ and their impact. Mediterranean Marine Science, 7, 87–118. doi:10.12681/mms.180.

    Article  Google Scholar 

  • Szymanska, E., Saccenti, E., Smilde, A. K., & Westerhuis, J. A. (2012). Double-check: validation of diagnostic statistics for PLS-DA models in metabolomics studies. Metabolomics, 8, S3–S16. doi:10.1007/s11306-011-0330-3.

    Article  Google Scholar 

  • Targett, N., Coen, L., Boettcher, A., & Tanner, C. (1992). Biogeographic comparisons of marine algal polyphenolics: evidence against a latitudinal trend. Oecologia, 89, 464–470. doi:10.1007/bf00317150.

    Article  Google Scholar 

  • Van Alstyne, K., & Paul, V. (1990). The biogeography of polyphenolic compounds in marine macroalgae: Temperate brown algal defenses deter feeding by tropical herbivorous fishes. Oecologia, 84, 158–163. doi:10.1007/bf00318266.

    Article  Google Scholar 

  • van der Kloet, F. M., Bobeldijk, I., Verheij, E. R., & Jellema, R. H. (2009). Analytical error reduction using single point calibration for accurate and precise metabolomic phenotyping. Journal of Proteome Research, 8, 5132–5141. doi:10.1021/pr900499r.

    Article  PubMed  Google Scholar 

  • Vergés, A., Paul, N. A., & Steinberg, P. D. (2008). Sex and life-history stage alter herbivore responses to a chemically defended red alga. Ecology, 89, 1334–1343. doi:10.1890/07-0248.1.

    Article  PubMed  Google Scholar 

  • Vermeij, G. J. (1978). Biogeography and adaptation: Patterns of marine life. (pp332). Cambridge:Harvard University Press.

  • Zanolla, M., Carmona, R., De la Rosa, J., Flagella, M., Souza-Egipsy, V. & Altamirano, M. (2011). The seasonal cycle of Asparagopsis taxiformis (Rhodophyta, Bonnemeaisoniaceae): key aspects of the ecology and physiology of the most invasive macroalga in Southern Spain. Paper presented at the European Journal of Phycology.

  • Zenetos, Α., Gofas, S., Morri, C., Rosso, A., Violanti, D., Garcia Raso, J., E., et al. (2012). Alien species in the Mediterranean Sea by 2012. A contribution to the application of European Union’s Marine Strategy Framework Directive (MSFD). Part 2. Introduction trends and pathways, 13, 328–352.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry Perez.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 802 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Greff, S., Zubia, M., Payri, C. et al. Chemogeography of the red macroalgae Asparagopsis: metabolomics, bioactivity, and relation to invasiveness. Metabolomics 13, 33 (2017). https://doi.org/10.1007/s11306-017-1169-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11306-017-1169-z

Keywords

Navigation