Ahmed, I., Greenwood, R., de Costello, B. L., Ratcliffe, N. M., & Probert, C. S. (2013). An investigation of fecal volatile organic metabolites in irritable bowel syndrome. PLoS One,
8(3), e58204.
PubMed Central
PubMed
Article
Google Scholar
Balasubramanian, K., Kumar, S., Singh, R. R., et al. (2009). Metabolism of the colonic mucosa in patients with inflammatory bowel diseases: an in vitro proton magnetic resonance spectroscopy study. Magnetic Resonance Imaging,
27(1), 79–86.
CAS
PubMed
Article
Google Scholar
Baumgart, D. C., & Sandborn, W. J. (2012). Crohn’s disease. Lancet,
380(9853), 1590–1605.
PubMed
Article
Google Scholar
Bezabeh, T., Somorjai, R. L., & Smith, I. C. P. (2009). MR metabolomics of fecal extracts: applications in the study of bowel diseases. Magnetic Resonance in Chemistry,
47(Suppl 1), S54–S61.
CAS
PubMed
Article
Google Scholar
Bezabeh, T., Somorjai, R. L., Smith, I. C., Nikulin, A. E., Dolenko, B., & Bernstein, C. N. (2001). The use of 1H magnetic resonance spectroscopy in inflammatory bowel diseases: distinguishing ulcerative colitis from Crohn’s disease. American Journal of Gastroenterology,
96(2), 442–448.
CAS
PubMed
Article
Google Scholar
Bjerrum, J. T., Hansen, M., Olsen, J., & Nielsen, O. H. (2010a). Genome-wide gene expression analysis of mucosal colonic biopsies and isolated colonocytes suggests a continuous inflammatory state in the lamina propria of patients with quiescent ulcerative colitis. Inflammatory Bowel Diseases,
16(6), 999–1007.
PubMed
Article
Google Scholar
Bjerrum, J. T., Nielsen, O. H., Hao, F., et al. (2010b). Metabonomics in ulcerative colitis: diagnostics, biomarker identification, and insight into the pathophysiology. Journal of Proteome Research,
9(2), 954–962.
CAS
PubMed
Article
Google Scholar
Bjerrum, J. T., Nielsen, O. H., Wang, Y. L., & Olsen, J. (2008). Technology insight: metabonomics in gastroenterology-basic principles and potential clinical applications. Nat Clin Pract Gastroenterol Hepatol,
5(6), 332–343.
PubMed
Article
Google Scholar
Bjerrum, J. T., Nyberg, C., Olsen, J., & Nielsen, O. H. (2013). Assessment of the validity of a multi-gene analysis in the diagnostics of inflammatory bowel disease. Journal of Internal Medicine,
275(5), 484–493.
Bjerrum, J. T., Rantalainen, M., Wang, Y., Olsen, J., & Nielsen, O. H. (2014). Integration of transcriptomics and metabonomics: Improving diagnostics, biomarker identification and phenotyping in ulcerative colitis. Metabolomics,
10, 280–290.
CAS
PubMed Central
PubMed
Article
Google Scholar
Bylesjö, M., Rantalainen, M., Cloarec, O., Nicholson, J. K., Holmes, E., & Trygg, J. (2006). OPLS discriminant analysis: combining the strengths of PLS-DA and SIMCA classification. Journal of Chemometrics,
20(8–10), 341–351.
Article
Google Scholar
Chapman, M. A., Grahn, M. F., Boyle, M. A., Hutton, M., Rogers, J., & Williams, N. S. (1994). Butyrate oxidation is impaired in the colonic mucosa of sufferers of quiescent ulcerative colitis. Gut,
35(1), 73–76.
CAS
PubMed Central
PubMed
Article
Google Scholar
Cloarec, O., Dumas, M. E., Trygg, J., et al. (2005). Evaluation of the orthogonal projection on latent structure model limitations caused by chemical shift variability and improved visualization of biomarker changes in 1H NMR spectroscopic metabonomic studies. Analytical Chemistry,
77(2), 517–526.
CAS
PubMed
Article
Google Scholar
Dawiskiba, T., Deja, S., Mulak, A., et al. (2014). Serum and urine metabolomic fingerprinting in diagnostics of inflammatory bowel diseases. World Journal of Gastroenterology,
20(1), 163–174.
CAS
PubMed Central
PubMed
Article
Google Scholar
De Preter, V., Bulteel, V., Suenaert, P., et al. (2009). Pouchitis, similar to active ulcerative colitis, is associated with impaired butyrate oxidation by intestinal mucosa. Inflammatory Bowel Diseases,
15(3), 335–340.
PubMed
Article
Google Scholar
De Preter, V., Rutgeerts, P., Schuit, F., Verbeke, K., & Arijs, I. (2013). Impaired expression of genes involved in the butyrate oxidation pathway in Crohn’s disease patients. Inflammatory Bowel Diseases,
19(3), E43–E44.
PubMed
Article
Google Scholar
Dong, F., Zhang, L., Hao, F., Tang, H., & Wang, Y. (2013). Systemic responses of mice to dextran sulfate sodium-induced acute ulcerative colitis using 1H NMR spectroscopy. Journal of Proteome Research,
12(6), 2958–2966.
CAS
PubMed
Article
Google Scholar
Duboc, H., Rajca, S., Rainteau, D., et al. (2013). Connecting dysbiosis, bile-acid dysmetabolism and gut inflammation in inflammatory bowel diseases. Gut,
62(4), 531–539.
CAS
PubMed
Article
Google Scholar
Duncan, S. H., Louis, P., & Flint, H. J. (2004). Lactate-utilizing bacteria, isolated from human feces, that produce butyrate as a major fermentation product. Applied and Environment Microbiology,
70(10), 5810–5817.
CAS
Article
Google Scholar
Eriksson, L., Trygg, J., & Wold, S. (2008). CV-ANOVA for significance testing of PLS and OPLS® models. Journal of Chemometrics,
22(11–12), 594–600.
CAS
Article
Google Scholar
Etchevers, M. J., Aceituno, M., & Sans, M. (2008). Are we giving azathioprine too late? The case for early immunomodulation in inflammatory bowel disease. World Journal of Gastroenterology,
14(36), 5512–5518.
CAS
PubMed Central
PubMed
Article
Google Scholar
Frank, D. N., St Amand, A. L., Feldman, R. A., Boedeker, E. C., Harpaz, N., & Pace, N. R. (2007). Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proceedings of the National Academy of Sciences of the United States of America,
104(34), 13780–13785.
CAS
PubMed Central
PubMed
Article
Google Scholar
Garner, C. E., Smith, S., de Lacy Costello, B., et al. (2007). Volatile organic compounds from feces and their potential for diagnosis of gastrointestinal disease. FASEB Journal,
21(8), 1675–1688.
CAS
PubMed
Article
Google Scholar
Geboes, K., Colombel, J.-F., Greenstein, A., et al. (2008). Indeterminate colitis: A review of the concept—What’s in a name? Inflammatory Bowel Diseases,
14(6), 850–857.
PubMed
Article
Google Scholar
Harvey, R. F., & Bradshaw, J. M. (1980). A simple index of Crohn’s-disease activity. Lancet,
1(8167), 514.
CAS
PubMed
Article
Google Scholar
Hove, H., Nordgaard-Andersen, I., & Mortensen, P. B. (1994). Faecal DL-lactate concentration in 100 gastrointestinal patients. Scandinavian Journal of Gastroenterology,
29(3), 255–259.
CAS
PubMed
Article
Google Scholar
Jacobs, D. M., Deltimple, N., van Velzen, E., et al. (2008). (1)H NMR metabolite profiling of feces as a tool to assess the impact of nutrition on the human microbiome. NMR in Biomedicine,
21(6), 615–626.
CAS
PubMed
Article
Google Scholar
Jansson, J., Willing, B., Lucio, M., et al. (2009). Metabolomics reveals metabolic biomarkers of Crohn’s disease. PLoS One,
4(7), e6386.
PubMed Central
PubMed
Article
Google Scholar
Le Gall, G., Noor, S. O., Ridgway, K., et al. (2011). Metabolomics of fecal extracts detects altered metabolic activity of gut microbiota in ulcerative colitis and irritable bowel syndrome. Journal of Proteome Research,
10(9), 4208–4218.
PubMed
Article
Google Scholar
Lin, H.-M., Edmunds, S. I., Helsby, N. A., Ferguson, L. R., & Rowan, D. D. (2009). Nontargeted urinary metabolite profiling of a mouse model of Crohn’s disease. Journal of Proteome Research,
8(4), 2045–2057.
CAS
PubMed
Article
Google Scholar
Marchesi, J. R., Holmes, E., Khan, F., et al. (2007). Rapid and noninvasive metabonomic characterization of inflammatory bowel disease. Journal of Proteome Research,
6(2), 546–551.
CAS
PubMed
Article
Google Scholar
Martinez-Medina, M., Aldeguer, X., Gonzalez-Huix, F., Acero, D., & Garcia-Gil, L. J. (2006). Abnormal microbiota composition in the ileocolonic mucosa of Crohn’s disease patients as revealed by polymerase chain reaction-denaturing gradient gel electrophoresis. Inflammatory Bowel Diseases,
12(12), 1136–1145.
PubMed
Article
Google Scholar
Murdoch, T. B., Fu, H., MacFarlane, S., Sydora, B. C., Fedorak, R. N., & Slupsky, C. M. (2008). Urinary metabolic profiles of inflammatory bowel disease in interleukin-10 gene-deficient mice. Analytical Chemistry,
80(14), 5524–5531.
CAS
PubMed
Article
Google Scholar
Nikolaus, S., & Schreiber, S. (2007). Diagnostics of inflammatory bowel disease. Gastroenterology,
133(5), 1670–1689.
PubMed
Article
Google Scholar
Olsen, J., Gerds, T. A., Seidelin, J. B., et al. (2009). Diagnosis of ulcerative colitis before onset of inflammation by multivariate modeling of genome-wide gene expression data. Inflammatory Bowel Diseases,
15(7), 1032–1038.
PubMed
Article
Google Scholar
Ooi, M., Nishiumi, S., Yoshie, T., et al. (2011). GC/MS-based profiling of amino acids and TCA cycle-related molecules in ulcerative colitis. Inflammation Research,
60(9), 831–840.
CAS
PubMed
Article
Google Scholar
Ordás, I., Eckmann, L., Talamini, M., Baumgart, D. C., & Sandborn, W. J. (2012). Ulcerative colitis. Lancet,
380(9853), 1606–1619.
PubMed
Article
Google Scholar
Planell, N., Lozano, J. J., Mora-Buch, R., et al. (2013). Transcriptional analysis of the intestinal mucosa of patients with ulcerative colitis in remission reveals lasting epithelial cell alterations. Gut,
62(7), 967–976.
CAS
PubMed
Article
Google Scholar
Ricart, E., García-Bosch, O., Ordás, I., & Panés, J. (2008). Are we giving biologics too late? The case for early versus late use. World Journal of Gastroenterology,
14(36), 5523–5527.
CAS
PubMed Central
PubMed
Article
Google Scholar
Saric, J., Wang, Y., Li, J., et al. (2008). Species variation in the fecal metabolome gives insight into differential gastrointestinal function. Journal of Proteome Research,
7(1), 352–360.
CAS
PubMed
Article
Google Scholar
Sartor, R. B. (2008). Microbial influences in inflammatory bowel diseases. Gastroenterology,
134(2), 577–594.
CAS
PubMed
Article
Google Scholar
Schicho, R., Nazyrova, A., Shaykhutdinov, R., Duggan, G., Vogel, H. J., & Storr, M. (2010). Quantitative metabolomic profiling of serum and urine in DSS-induced ulcerative colitis of mice by 1H NMR spectroscopy. Journal of Proteome Research,
9(12), 6265–6273.
CAS
PubMed
Article
Google Scholar
Schicho, R., Shaykhutdinov, R., Ngo, J., et al. (2012). Quantitative metabolomic profiling of serum, plasma, and urine by (1)H NMR spectroscopy discriminates between patients with inflammatory bowel disease and healthy individuals. Journal of Proteome Research,
11(6), 3344–3357.
CAS
PubMed Central
PubMed
Article
Google Scholar
Schroeder, K. W., Tremaine, W. J., & Ilstrup, D. M. (1987). Coated oral 5-aminosalicylic acid therapy for mildly to moderately active ulcerative colitis. A randomized study. New England Journal of Medicine,
317(26), 1625–1629.
CAS
PubMed
Article
Google Scholar
Segain, J. P., Raingeard de Blétière la, D., Bourreille, A., et al. (2000). Butyrate inhibits inflammatory responses through NFkappaB inhibition: implications for Crohn’s disease. Gut,
47(3), 397–403.
CAS
PubMed Central
PubMed
Article
Google Scholar
Sipos, F., Galamb, O., Wichmann, B., et al. (2011). Peripheral blood based discrimination of ulcerative colitis and Crohn’s disease from non-IBD colitis by genome-wide gene expression profiling. Disease Markers,
30(1), 1–17.
CAS
PubMed Central
PubMed
Article
Google Scholar
Sokol, H., Pigneur, B., Watterlot, L., et al. (2008). Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proceedings of the National Academy of Sciences of the United States of America,
105(43), 16731–16736.
CAS
PubMed Central
PubMed
Article
Google Scholar
Sokol, H., Seksik, P., Rigottier-Gois, L., et al. (2006). Specificities of the fecal microbiota in inflammatory bowel disease. Inflammatory Bowel Diseases,
12(2), 106–111.
PubMed
Article
Google Scholar
Stephens, N. S., Siffledeen, J., Su, X., Murdoch, T. B., Fedorak, R. N., & Slupsky, C. M. (2012). Urinary NMR metabolomic profiles discriminate inflammatory bowel disease from healthy. Journal of Crohn’s and Colitis,
7(2), e42–e48.
PubMed
Article
Google Scholar
Swidsinski, A., Loening-Baucke, V., & Herber, A. (2009). Mucosal flora in Crohn’s disease and ulcerative colitis - an overview. Journal of Physiology and Pharmacology,
60(Suppl 6), 61–71.
PubMed
Google Scholar
Tedelind, S., Westberg, F., Kjerrulf, M., & Vidal, A. (2007). Anti-inflammatory properties of the short-chain fatty acids acetate and propionate: a study with relevance to inflammatory bowel disease. World Journal of Gastroenterology,
13(20), 2826–2832.
CAS
PubMed
Google Scholar
Thibault, R., Blachier, F., Darcy-Vrillon, B., de Coppet, P., Bourreille, A., & Segain, J.-P. (2010). Butyrate utilization by the colonic mucosa in inflammatory bowel diseases: a transport deficiency. Inflammatory Bowel Diseases,
16(4), 684–695.
PubMed
Article
Google Scholar
Topping, D. L., & Clifton, P. M. (2001). Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. Physiological Reviews,
81(3), 1031–1064.
CAS
PubMed
Google Scholar
Trygg, J., & Wold, S. (2002). Orthogonal projections to latent structures (O-PLS). Journal of Chemometrics,
16(3), 119–128.
CAS
Article
Google Scholar
Tso, V. K., Sydora, B. C., Foshaug, R. R., et al. (2013). Metabolomic profiles are gender, disease and time specific in the interleukin-10 gene-deficient mouse model of inflammatory bowel disease. PLoS One,
8(7), e67654.
CAS
PubMed Central
PubMed
Article
Google Scholar
Vavricka, S. R., Spigaglia, S. M., Rogler, G., et al. (2012). Systematic evaluation of risk factors for diagnostic delay in inflammatory bowel disease. Inflammatory Bowel Diseases,
18(3), 496–505.
PubMed
Article
Google Scholar
Vermeiren, J., Van den Abbeele, P., Laukens, D., et al. (2012). Decreased colonization of fecal Clostridium coccoides/Eubacterium rectale species from ulcerative colitis patients in an in vitro dynamic gut model with mucin environment. FEMS Microbiology Ecology,
79(3), 685–696.
CAS
PubMed
Article
Google Scholar
Vernia, P., Caprilli, R., Latella, G., Barbetti, F., Magliocca, F. M., & Cittadini, M. (1988). Fecal lactate and ulcerative colitis. Gastroenterology,
95(6), 1564–1568.
CAS
PubMed
Google Scholar
von Stein, P., Lofberg, R., Kuznetsov, N. V., et al. (2008). Multigene analysis can discriminate between ulcerative colitis, Crohn’s disease, and irritable bowel syndrome. Gastroenterology,
134(7), 1869–1881.
Article
Google Scholar
Walton, C., Fowler, D. P., Turner, C., et al. (2013). Analysis of volatile organic compounds of bacterial origin in chronic gastrointestinal diseases. Inflammatory Bowel Diseases,
19(10), 2069–2078.
PubMed
Article
Google Scholar
Williams, H. R. T., Cox, I. J., Walker, D. G., et al. (2009). Characterization of inflammatory bowel disease with urinary metabolic profiling. American Journal of Gastroenterology,
104(6), 1435–1444.
CAS
PubMed
Article
Google Scholar
Williams, H. R. T., Willsmore, J. D., Cox, I. J., et al. (2012). Serum metabolic profiling in inflammatory bowel disease. Digestive Diseases and Sciences,
57(8), 2157–2165.
CAS
PubMed
Article
Google Scholar
Wu, F., Dassopoulos, T., Cope, L., et al. (2007). Genome-wide gene expression differences in Crohn’s disease and ulcerative colitis from endoscopic pinch biopsies: insights into distinctive pathogenesis. Inflammatory Bowel Diseases,
13(7), 807–821.
PubMed
Article
Google Scholar
Zhang, Y., Lin, L., Xu, Y., Lin, Y., Jin, Y., & Zheng, C. (2013). 1H NMR-based spectroscopy detects metabolic alterations in serum of patients with early-stage ulcerative colitis. Biochemical and Biophysical Research Communications,
433(4), 547–551.
CAS
PubMed
Article
Google Scholar