Skip to main content
Log in

Mitochondrial phylogeography of the ponderosa pines: widespread gene capture, interspecific sharing, and two unique lineages

  • Original Article
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

The mitochondrial phylogeography of some conifers shows evidence of introgression from sympatric congeners, with mitochondrial lineages not always reflecting species. This suggests that unique mitochondrial haplotypes previously reported in the ponderosa pines (Pinus subsection Ponderosae) from the USA might be more widespread in taxa not yet sampled. Recent nuclear and plastome phylogenies placed Pinus ponderosa paraphyletic in relation to Ponderosae in Mexico and Central America and confirmed that sympatric Pinus jeffreyi is more closely related to the California big-cone pines (Pinus subsection Sabinianae). We describe a broad survey of the repeated motifs in nad1 intron 2 of Ponderosae and Sabinianae, which revealed that most of the 27 mitochondrial haplotypes were not exclusive to a taxon but showed strong geographic patterns. In surprising contrast to nuclear and plastid phylogenies that resolve a monophyletic P. jeffreyi, unidirectional mitochondrial capture by P. jeffreyi (Sabinianae) from P. ponderosa was observed in all 28 samples of Jeffrey pine. Confirming the paraphyly of P. ponderosa sensu lato, mitochondrial haplotypes found mostly west and those found mostly east of the Great Basin each have more similarity to haplotypes found in Mexican taxa than they have to each other. Two distinctive haplotypes that were terminal nodes on the network were confirmed to be endemic to the Great Basin, USA, suggesting that they arose in place and have been maintained in isolation. Altogether, our results indicate a history of complex and intriguing mitochondrial relationships among the ponderosa pine species, especially between P. ponderosa and P. jeffreyi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Code availability

Not applicable.

References

  • Aizawa M, Kim Z-S, Yoshimaru H (2012) Phylogeography of the Korean pine (Pinus koraiensis) in northeast Asia: inferences from organelle gene sequences. J Plant Res 125:713–723

    Article  PubMed  Google Scholar 

  • Avise JC (2009) Phylogeography: retrospect and prospect. J Biogeography 36:3–15

    Article  Google Scholar 

  • Axelrod D (1986) Cenozoic history of some western American pines. Ann Missouri Bot Gard 73:565

    Article  Google Scholar 

  • Bandelt H-J, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48

    Article  PubMed  CAS  Google Scholar 

  • Bastien D, Favre JM, Collignon AM, Sperisen C, Jeandroz S (2003) Characterization of a mosaic minisatellite locus in the mitochondrial DNA of Norway spruce (Picea abies (L.) Karst.). Theor Appl Gen 107:574–580

    Article  CAS  Google Scholar 

  • Birky CW Jr, Maruyama T, Fuerst P (1983) An approach to population and evolutionary genetic theory for genes in mitochondria and chloroplasts, and some results. Genet 103:513–527

    Article  Google Scholar 

  • Bock DG, Andrew RL, Rieseberg LH (2014) On the adaptive value of cytoplasmic genomes in plants. Mol Ecol 23:4899–4911

    Article  PubMed  Google Scholar 

  • Bouillé M, Senneville S, Bousquet J (2011) Discordant mtDNA and cpDNA phylogenies indicate geographic speciation and reticulation as driving factors for the diversification of the genus Picea. Tree Gen Genomes 7:469–484

    Article  Google Scholar 

  • Briggs JS, Vander Wall SB, Jenkins SH (2009) Forest rodents provide directed dispersal of Jeffrey pine seeds. Ecology 90:675–687. https://doi.org/10.1890/07-0542.1

    Article  PubMed  Google Scholar 

  • Buck JM, Adams RS, Cone J, Conkle MT, Libby WJ, Eden CJ, Knight MJ (1970) California tree seed zones. USDA Forest Service San Francisco, California, USA

  • Burban C, Petit R (2003) Phylogeography of maritime pine inferred with organelle markers having contrasted inheritance. Mol Ecol 12:1487–1495

    Article  PubMed  CAS  Google Scholar 

  • Callaham RZ (2013a) Pinus ponderosa: a taxonomic review with five subspecies in the United States. USDA Forest Service, Pacific Southwest Research Station PSW-RP 264:1–53

  • Callaham RZ (2013b) Pinus ponderosa: geographic races and subspecies based on morphological variation. USDA Forest Service, Pacific Southwest Research Sation PSW-RP-265:1–54

  • Charlet D (1996) Atlas of Nevada conifers: a phytogeographic reference. University of Nevada Press, Reno, Nevada, USA

    Google Scholar 

  • Charlet D (2007) Distribution patterns of Great Basin conifers: implications of extinction and immigration. Aliso 24:31–61

    Article  Google Scholar 

  • Chaw S-M, Shih AC-C, Wu Y-W, Liu S-M, Chou T-Y, Wang D (2008) The mitochondrial genome of the gymnosperm Cycas taitungensis contains a novel family of short interspersed elements, Bpu sequences, and abundant RNA editing sites. Mol Biol Evol 25:603–615

    Article  PubMed  CAS  Google Scholar 

  • Conkle M, Critchfield WB (1988) Genetic variation and hybridization of ponderosa pine. In: Baumgartner D, Lotan J (eds) Ponderosa pine: the species and its management. Washington State University, Pullman, Washington, USA, pp 27–44

    Google Scholar 

  • Critchfield WB (1966) Crossability and relationships of the California big-cone pines USDA Forest Service Research Paper NC-6:36–44

  • Critchfield WB (1984) Crossability and relationships of Washoe pine. Madroño 31:144–170

    Google Scholar 

  • Currat M, Ruedi M, Petit RJ, Excoffier L (2008) The hidden side of invasions: massive introgression by local genes. Evolution 62:1908–1920

    PubMed  Google Scholar 

  • Du FK, Petit RJ, Liu JQ (2009) More introgression with less gene flow: chloroplast vs. mitochondrial DNA in the Picea asperata complex in China, and comparison with other conifers. Mol Ecol 18:1396–1407

    Article  PubMed  CAS  Google Scholar 

  • Ellegren H (2004) Microsatellites: simple sequences with complex evolution. Nat Rev Genet 5:435–445. https://doi.org/10.1038/nrg1348

    Article  PubMed  CAS  Google Scholar 

  • Forgione I, Bonavita S, Rosaria Regina TM (2019) Mitochondria of Cedrus atlantica and allied species: a new chapter in the horizontal gene transfer history. Plant Sci 281:93–101

    Article  PubMed  CAS  Google Scholar 

  • Furnier GR, Adams WT (1986) Geographic patterns of allozyme variation in Jeffrey pine. Am J Bot 73:1009–1015

    Article  Google Scholar 

  • Gérardi S, Jaramillo-Correa J, Beaulieu J, Bousquet J (2010) From glacial refugia to modern populations: new assemblages of organelle genomes generated by differential cytoplasmic gene flow in transcontinental black spruce. Mol Ecol 19:5265–5280

    Article  PubMed  Google Scholar 

  • Gernandt DS, Hernández-León S, Salgado-Hernández E, Pérez de la Rosa JA, Jardón-Barbolla L (2009) Phylogenetic relationships of Pinus subsection Ponderosae inferred from rapidly evolving cpDNA regions. Sys Bot 34:481–491

    Article  Google Scholar 

  • Godbout J, Fazekas A, Newton CH, Yeh FC, Bousquet J (2008) Glacial vicariance in the Pacific Northwest: evidence from a lodgepole pine mitochondrial DNA minisatellite for multiple genetically distinct and widely separated refugia. Mol Ecol 17:2463–2475

    Article  PubMed  CAS  Google Scholar 

  • Godbout J, Jaramillo-Correa JP, Beaulieu J, Bousquet J (2005) A mitochondrial DNA minisatellite reveals the postglacial history of jack pine (Pinus banksiana), a broad-range North American conifer. Mol Ecol 14:3497–3512

    Article  PubMed  CAS  Google Scholar 

  • Godbout J, Yeh FC, Bousquet J (2012) Large-scale asymmetric introgression of cytoplasmic DNA reveals Holocene range displacement in a North American boreal pine complex. Ecol Evol 2:1853–1866

    Article  PubMed  PubMed Central  Google Scholar 

  • Goslee SC, Urban DL (2007) The ecodist package for dissimilarity-based analyses of ecological data. J Stat Software 22:1–19

    Article  Google Scholar 

  • Gugerli F, Senn J, Anzidei M, Madaghiele A, Buchler U, Sperisen C, Vendramin G (2001) Chloroplast microsatellites and mitochondrial nad1 intron2 sequences indicate congruent phylogenetic relationships among Swiss stone pine (Pinus cembra), Siberian stone pine (Pinus sibirica), and Siberian dwarf pine (Pinus pumila). Mol Ecol 10:1489–1497

    Article  PubMed  CAS  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT Nucleic acids symposium series 41:95–98

  • Haller JR (1962) Variation and hybridization in ponderosa and Jeffrey pines. Univ Calif Publ Bot 34:123–165

    Google Scholar 

  • Haller JR (1986) Taxonomy and relationships of the mainland and island populations of Pinus torreyana (Pinaceae). Sys Bot 1:39–50

    Article  Google Scholar 

  • Haller JR, Vivrette NJ (2011) Ponderosa pine revisited. Aliso 29:53–57

    Article  Google Scholar 

  • Hamming RW (1950) Error detecting and error correcting codes The. Bell Syst Tech J 29:147–160

    Article  Google Scholar 

  • Houliston GJ, Olson MS (2006) Nonneutral evolution of organelle genes in Silene vulgaris. Genet 174:1983–1994

    Article  CAS  Google Scholar 

  • Huson DH, Scornavacca C (2011) A survey of combinatorial methods for phylogenetic networks. Genome Biol Evol 3:23–25

    Article  PubMed  CAS  Google Scholar 

  • Jackman SD, Coombe L, Warren RL, Kirk H, Trinh E, MacLeod T, Pleasance S, Pandoh P, Zhao Y, Coope R, Bousquet J, Bohlmann J, Jones SJM, Birol I (2020) Complete mitochondrial genome of a gymnosperm, Sitka spruce (Picea sitchensis) indicates a complex physical structure. Genome Biol Evol 12:1174–1179

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jaramillo-Correa JP, Aguirre-Planter E, Eguiarte LE, Khasa DP, Bousquet J (2013) Evolution of an ancient microsatellite hotspot in the conifer mitochondrial genome and comparison with other plants. J Mol Evol 76:146–157

    Article  PubMed  CAS  Google Scholar 

  • Jaramillo-Correa JP, Bousquet J (2005) Mitochondrial genome recombination in the zone of contact between two hybridizing conifers. Genet 171:1951–1962

    Article  CAS  Google Scholar 

  • Johansen AD, Latta RG (2003) Mitochondrial haplotype distribution, seed dispersal and patterns of postglacial expansion of ponderosa pine. Mol Ecol 12:293–298

    Article  PubMed  CAS  Google Scholar 

  • Johnson M, Vander Wall SB, Borchert M (2003) A comparative analysis of seed and cone characteristics and seed-dispersal strategies of three pines in the subsection Sabinianae. Plant Ecol 168:69–84

    Article  Google Scholar 

  • Jombart T, Dray S (2010) adephylo: exploratory analyses for the phylogenetic comparative method. Bioinformatics 26:1907–1909

    Article  PubMed  CAS  Google Scholar 

  • Kitzmiller JH (2005) Provenance trials of ponderosa pine in Northern California. Forest Sci 51:595–607

    Google Scholar 

  • Kral R (1993) Pinus. In: Flora of North America Editorial Committee (ed) Flora of North America, vol 2. Oxford University Press, New York, New York, USA, pp 373–398

  • Latta RG (2006) Integrating patterns across multiple genetic markers to infer spatial processes. Landscape Ecol 21:809–820

    Article  Google Scholar 

  • Latta RG, Mitton JB (1999) Historical separation and present gene flow through a zone of secondary contact in ponderosa pine. Evolution 53:769–774

    Article  PubMed  Google Scholar 

  • Leigh JW, Bryant D (2015) Popart: full-feature software for haplotype network construction. Meth Ecol Evol 6:1110–1116

    Article  Google Scholar 

  • Lesser MR, Jackson ST (2013) Contributions of long-distance dispersal to population growth in colonising Pinus ponderosa populations. Ecol Letters 16:380–389. https://doi.org/10.1111/ele.12053

    Article  Google Scholar 

  • Lesser MR, Parchman TL, Jackson ST (2013) Development of genetic diversity, differentiation and structure over 500 years in four ponderosa pine populations. Mol Ecol 22:2640–2652. https://doi.org/10.1111/mec.12280

    Article  PubMed  CAS  Google Scholar 

  • Little EL Jr (1971) Atlas of United States trees, vol 1. District of Columbia, USA, Washington

    Book  Google Scholar 

  • López-Reyes A, Pérez de la Rosa J, Ortiz E, Gernandt DS (2015) Morphological, molecular, and ecological divergence in Pinus douglasiana and P. maximinoi. Sys Bot 40:658–670. https://doi.org/10.1600/036364415X689384

    Article  Google Scholar 

  • Malek O, Axel B, Knoop V (1997) Evolution of trans-splicing plant mitochondrial introns in pre-Permian times. Proc Nat Acad Sci USA 94:553–558

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Martínez M (1948) Los pinos mexicanos, segunda edicion. Ediciones Botas, Mexico City, Mexico

  • Mazel F, Davis KM, Loudon A, Kwong WK, Groussin M, Parfrey LW (2018) Is host filtering the main driver of phylosymbiosis across the tree of life?. mSystems 3:1–15.

  • Mirov NT (1953) Chemical aspects of diploxylon pines. Silv Gen 2:93–96

    Google Scholar 

  • Mirov NT (1958) Pinus oaxacana, a new species from Mexico. Madroño 14:145–176

    Google Scholar 

  • Mirov NT (1967) The genus Pinus. The Ronald Press Company, New York, New York, USA

    Google Scholar 

  • Mitton JB, Kreiser BR, Rehfeldt GE (2000) Primers designed to amplify a mitochondrial nad1 intron in ponderosa pine, Pinus ponderosa, limber pine, P. flexilis, and Scots pine P Sylvestris. Theor Appl Gen 101:1269–1272

    Article  CAS  Google Scholar 

  • Nagel LM et al (2017) Adaptive silviculture for climate change: a national experiment in manager-scientist partnerships to apply an adaptation framework. J Forest 115:167–178. https://doi.org/10.5849/jof.16-039

    Article  Google Scholar 

  • Neale D, Sederoff R (1989) Paternal inheritance of chloroplast DNA and maternal inheritance of mitochondrial DNA in loblolly pine. Theor Appl Gen 77:212–216

    Article  CAS  Google Scholar 

  • Neale DB et al (2014) Decoding the massive genome of loblolly pine using haploid DNA and novel assembly strategies. Genome Biol 15:1–29. https://doi.org/10.1186/gb-2014-15-3-r59

    Article  CAS  Google Scholar 

  • Norris JR, Betancourt JL, Jackson ST (2016) Late Holocene expansion of ponderosa pine (Pinus ponderosa) in the Central Rocky Mountains USA. J Biogeography 134:778–790

    Article  Google Scholar 

  • Padgham M and Sumner MD (2020) Geodist: fast, dependency-free geodesic distance calculations. R package version 0.0.4

  • Parchman TL, Benkman C (2007) The geographic selection mosaic for ponderosa pine and crossbills: a tale of two squirrels. Evolution 62:348–360. https://doi.org/10.1111/j.1558-5646.2007.00295.x

    Article  PubMed  Google Scholar 

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population Genetic Software for Teaching and Research Mol Ecol Notes 6:288–295

    Google Scholar 

  • Percy DM et al (2014) Understanding the spectacular failure of DNA barcoding in willows (Salix): does this result from a trans-specific selective sweep? Mol Ecol 23:4737–4756

    Article  PubMed  CAS  Google Scholar 

  • Perry JP Jr (1991) The pines of Mexico and Central America. Timber Press, Portland, Oregon, USA

    Google Scholar 

  • Petit RJ et al (2002) Identification of refugia and post-glacial colonisation routes of European white oaks based on chloroplast DNA and fossil pollen evidence. For Ecol Mgmt 156:49–74

    Article  Google Scholar 

  • Petit RJ, Duminil J, Fineschi S, Hampe A, Salvini D, Vendramin GG (2005) Comparative organization of chloroplast, mitochondrial and nuclear diversity in plant populations. Mol Ecol 14:689–701

    Article  PubMed  CAS  Google Scholar 

  • Petit RJ, Excoffier L (2009) Gene flow and species delimitation. Trends Ecol Evol 24:386–393

    Article  PubMed  Google Scholar 

  • Petit RJ, Hampe A (2006) Some evolutionary consequences of being a tree. Ann Rev Ecol Evol Syst 37:187–214. https://doi.org/10.1146/annurev.ecolsys.37.091305.110215

    Article  Google Scholar 

  • Potter KM, Hipkins VD, Mahalovich MF, Means RE (2013) Mitochondrial DNA haplotype distribution patterns in Pinus ponderosa (Pinaceae): range-wide evolutionary history and implications for conservation. Am J Bot 100:1562–1579

    Article  PubMed  Google Scholar 

  • Potter KM, Hipkins VD, Mahalovich MF, Means RE (2015) Nuclear genetic variation across the range of ponderosa pine (Pinus ponderosa): Phylogeographic, taxonomic, and conservation implications. Tree Gen Genomes 11:1–23. https://doi.org/10.1007/s11295-015-0865-y

    Article  Google Scholar 

  • Pyhäjärvi T, Salmela MJ, Savilainen O (2008) Colonization routes of Pinus sylvestris inferred from distribution of mitochondrial DNA variation. Tree Gen Genomes 4:247–254

    Article  Google Scholar 

  • Ran J-H, Shen T-T, Liu W-J, Wang P-P, Wang X-Q (2015) Mitochondrial introgression and complex biogeographic history of the genus Picea. Mol Phylogen Evol 93:63–76

    Article  Google Scholar 

  • R Core Team (2021) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria https://www.R-project.org/

  • Read R (1980) Genetic variation in seedling progeny of ponderosa pine provenances. Society of American Foresters, Washington, District of Columbia, USA

    Google Scholar 

  • Rehfeldt GE (1999) Systematics and genetic structure of Ponderosae taxa (Pinaceae) inhabiting the mountain islands of the Southwest. Am J Bot 86:741–752

    Article  PubMed  CAS  Google Scholar 

  • Rehfeldt GE, Jaquish BC, López-Upton J, Sáenz-Romero C, St Clair JB, Leites LP, Joyce DG (2014) Comparative genetic responses to climate for the varieties of Pinus ponderosa and Pseudotsuga menziesii: realized climate niches. Forest Ecol Manage 324:126–137

    Article  Google Scholar 

  • Richardson D (1998) Ecology and Biogeography of Pinus. Cambridge University Press, New York, New York, USA

    Google Scholar 

  • Rieseberg LH, Whitton J, Linder CR (1996) Molecular marker incongruence in plant hybrid zones and phylogenetic trees. Acta Bot Neerlandica 45:243–262

    Article  CAS  Google Scholar 

  • Schwilk DW, Keeley JE (2006) The role of fire refugia in the distribution of Pinus sabiniana (Pinaceae) in the southern Sierra Nevada. Madroño 53:364–372

  • Shinneman DJ, Means RE, Potter KM, Hipkins VD (2016) Exploring climate niches of ponderosa pine (Pinus ponderosa Douglas ex Lawson) haplotypes in the western United States: Implications for evolutionary history and conservation PLOS ONE 11 https://doi.org/10.1371/journal.pone.0151811

  • Siepielski AM, Benkman CW (2010) Conflicting selection from an antagonist and a mutualist enhances phenotypic variation in a plant. Evolution 64:1120–1128. https://doi.org/10.1111/j.1558-5646.2009.00867.x

    Article  PubMed  Google Scholar 

  • Smith RH (1977) Monoterpenes of ponderosa pine xylem resin in western United States. USDA. For Serv Tech Bull 1532

  • Soranzo N, Alia R, Provan J, Powell W (2000) Patterns of variation at a mitochondrial sequence-tagged-site locus provides new insights into the postglacial history of European Pinus sylvestris populations. Mol Ecol 9:1205–1211

    Article  PubMed  CAS  Google Scholar 

  • Sperisen C, Buchler U, Gugerli F, Matyas G, Geburek T, Vendramin GG (2001) Tandem repeats in plant mitochondrial genomes: application to the analysis of population differentiation in the conifer Norway spruce. Mol Ecol 10:257–263

    Article  PubMed  CAS  Google Scholar 

  • Stadler K (2018) Cultevo: tools, measures and statistical tests for cultural evolution. R package version 1.0.2 https://kevinstadler.github.io/cultevo/

  • Straub SCK, Parks M, Weitemier K, Fishbein M, Cronn RC, Liston A (2012) Navigating the tip of the genomic iceberg: next-generation sequencing for plant systematics. Am J Bot 99:349–364

    Article  PubMed  CAS  Google Scholar 

  • Strauss S, Hong Y-P, Hipkins V (1993) High levels of population differentiation for mitochondrial DNA haplotypes in Pinus radiata, muricata, and attenuata. Theor Appl Gen 86:605–611

    Article  CAS  Google Scholar 

  • Sullivan AR et al (2020) The mitogenome of Norway spruce and a reappraisal of mitochondrial recombination in plants. Genome Biol Evol 12:3586–3598. https://doi.org/10.1093/gbe/evz263

    Article  PubMed  CAS  Google Scholar 

  • Syring J, Willyard A, Cronn R, Liston A (2005) Evolutionary relationships among pine (Pinaceae) subsections inferred from multiple low-copy nuclear loci. Am J Bot 92:2086–2100

    Article  PubMed  Google Scholar 

  • Toor N, Hausner G, Zimmerly S (2001) Coevolution of group II intron RNA structures with their intron-encoded reverse transcriptases. RNA 7:1142–1152

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tsutsui K, Suwa A, Ki Sawada, Kato T, Ohsawa TA, Watano Y (2009) Incongruence among mitochondrial, chlorplast, and nuclear gene trees in Pinus subgenus Strobus (Pinaceae). J Plant Res 122(5):509–521

    Article  PubMed  CAS  Google Scholar 

  • Vander Wall SB (1993) Cache site selection by chipmunks (Tamias spp.) and its influence on the effectiveness of seed dispersal in Jeffrey pine (Pinus jeffreyi). Oecologia 96:246–252

    Article  PubMed  Google Scholar 

  • Vander Wall SB, Enders MS, Barga S, Moore C, Seaman A, Perea R (2012) Jeffrey pine seed dispersal in the Sierra San Pedo Mártir Baja California, Mexico Western North American. Naturalist 72:534–542. https://doi.org/10.3398/064.072.0409

    Article  Google Scholar 

  • Wang B, Climent J, Wang X-R (2015) Horizontal gene transfer from a flowering plant to the insular pine Pinus canariensis (Chr. Sm. Ex DC in Buch). Heredity 114:413–418

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang B, Wang X-R (2014) Mitochondrial DNA capture and divergence in Pinus provide new insights into the evolution of the genus. Mol Phylogen Evol 80:20–30

    Article  CAS  Google Scholar 

  • Wang X-Q, Ran J-H (2014) Evolution and biogeography of gymnosperms. Mol Phylogen Evol 75:24–40

    Article  Google Scholar 

  • Weidman RH (1939) Evidences of racial influence in a 25-year test of ponderosa pine. J Agric Res 59:855–887

    Google Scholar 

  • Wells OO (1964) Geographic varation in ponderosa pine I The ecotypes and their distribution. Silv Gen 13:89–103

    Google Scholar 

  • Williams CG (2010) Long-distance pine pollen still germinates after meso-scale dispersal. Am J Bot 97:846–855

    Article  PubMed  Google Scholar 

  • Willyard A, Syring J, Gernandt DS, Liston A, Cronn R (2007) Fossil calibration of molecular divergence infers a moderate mutation rate and recent radiations for Pinus. Mol Biol Evol 24:90–101

    Article  PubMed  Google Scholar 

  • Willyard A, Cronn R, Liston A (2009) Reticulate evolution and incomplete lineage sorting among the ponderosa pines. Mol Phylogen Evol 52:498–511

    Article  CAS  Google Scholar 

  • Willyard A et al. (2021) Phylogenomics in the hard pines (Pinus subsection Ponderosae; Pinaceae) confirms paraphyly in Pinus ponderosa, and places Pinus jeffreyi with the California big cone pines Sys Bot 46:538–561

  • Willyard A et al (2017) Pinus ponderosa: a checkered past obscured four species. Am J Bot 104:161–181

    Article  PubMed  Google Scholar 

  • Wofford AM, Finch K, Bigott A, Willyard A (2013) A set of plastid loci for use in multiplex fragment length genotyping for intraspecific variation in Pinus (Pinaceae). Appl Plant Sci 2:1–10

    Google Scholar 

  • Wolfe KH, Li WH, Sharp PM (1987) Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proc Nat Acad Sci USA 84:9054–9058

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Won H, Renner SS (2003) Horizontal gene transfer from flowering plants to Gnetum. Proc Nat Acad Sci USA 100:10824–10829

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We thank Jean Bousquet, David Charlet, George Ferguson, Valerie Hipkins, Stephen K. Langer, Robert Latta, Sergio Hernández León, Aaron Liston, Diana Ramos Dorantes, Charles S. Rand, and anonymous reviewers for their comments on earlier versions of the manuscript. Hendrix College students Adam Bigott, Hassan Karemera, Nicole Segear, Mason Sifford, and Austin Wofford contributed to the laboratory and analytical work on these mitochondrial data as part of their undergraduate research projects. Other Hendrix students helped with field collections and DNA isolations: Blake Cooper, Connor Douglas, Kristen Finch, Jack Finney, Payton Lea, Julia Lefler, Brandon Linz, Samuel Lockhart, Trang Nguyen, Dakota Pouncey, Brian Schumacher, Mason Sifford, Joshua Smith, Kevin Spatz, and Pete Wills. Land managers who protect these populations and permitted our collections are gratefully acknowledged: Bighorn, Black Hills, Cleveland, Colville, Coronado, Deschutes, Eldorado, Fremont-Winema, Humboldt-Toiyabe, Inyo, Kaibab, Klamath, Los Padres, Mendocino, Modoc, Nez Perce, Ochoco, San Bernardino, San Juan, Santa Fe, Sequoia, Shasta-Trinity, Sierra, Six Rivers, Umpqua, and Wasatch National Forests; California State Parks (Henry Coe and Henry Cowell), Fred Lawrence Whipple Observatory, Guadalupe National Park, Hualapai Mountain Park (Mohave County, AZ), Joint Base Lewis-McChord, North Sierra Tree Improvement Association, Sierra Pacific Industries, Quail Hollow Park (Santa Cruz County, CA), the Nature Conservancy, University of California Santa Cruz Arboretum, and University of California Reserves (Landel-Hills Big Creek and James San Jacinto).

Funding

A. W. and her students received support from Arkansas SURF, Arkansas Academy of Science Undergraduate Research Fund, and the Hendrix College Odyssey program; K. M. P. was funded with Cost Share Agreement 18-CS-11330110–026 between the U.S. Department of Agriculture, Forest Service, Southern Research Station, and North Carolina State University; D. S. G. was funded from Programa de Apoyo a Proyectos de Investigación e Innovación Tecnológica (DGAPA PAPIIT-IN228209).

Author information

Authors and Affiliations

Authors

Contributions

A. W. designed the experiment, collected plant samples, supervised student lab work, aligned the nucleotide sequences, and wrote the manuscript; D. S. G. collected plant samples, supervised lab work, and contributed to the manuscript; A. L. R. collected plant samples, sequenced nucleotides, and contributed to the manuscript; K. M. P. advised experimental design and contributed to the manuscript.

Corresponding author

Correspondence to Ann Willyard.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Data archiving statement

Nucleotide sequences were submitted to GenBank (MK766513–MK766718). Three Supplemental Data files were included with this article. Online Resource 3 lists the geographic location and observed haplotypes for 206 individuals of 22 taxa from 123 locations in the USA, Mexico, and Guatemala. The 11 GenBank accessions that were used are included in the table without geographic location. Online Resource 4 is the alignment of 217 samples, with motif numbers 1–8 (Fig. 2) inserted before each motif to aid alignment and Online Resource 5 is the alignment without motif columns. The first characters of each sample name in the alignments give the haplotype. Online Resource 6 is the binary matrix based on the presence/absence of each motif repeat that was used to create the median joining network.

Additional information

Responsible Editor: G.G. Vendramin

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Willyard, A., Gernandt, D.S., López-Reyes, A. et al. Mitochondrial phylogeography of the ponderosa pines: widespread gene capture, interspecific sharing, and two unique lineages. Tree Genetics & Genomes 17, 47 (2021). https://doi.org/10.1007/s11295-021-01529-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11295-021-01529-4

Keywords

Navigation