Skip to main content
Log in

Paternity and ploidy segregation of progenies derived from tetraploid Malus xiaojinensis

  • Original Paper
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Apomixis is usually subdivided into parthenogenesis, apogamy, and apospory on the basis of different mechanisms of development and cytogenetic effects. Although most plants and animals undergo sexual reproduction to multiply, it is important to understand the role of apomixis in plant reproduction because of its useful applications in the breeding and propagation of some crops. Tetraploid Malus xiaojinensis Cheng et Jiang is a typical facultative apomictic plant species. Paternity and ploidy analyses of M. xiaojinensis seedlings were performed with flow cytometry in conjunction with microsatellite and single nucleotide polymorphism markers. The proportion of apomictic derived progeny of M. xiaojinensis × Malus baccata was 54.05, 53.96, and 43.55 % from 2008 to 2010, respectively. The progeny of M. xiaojinensis × M. baccata comprised hybrids of 2x, 3x, 4x, or 5x ploidy, whereas apomictic offspring were 2x, 3x, or 4x. Among the apomictic derived progeny, the ploidy of restituted apomictic progeny was 2x, 3x, or 4x, whereas that of nonrestituted apomictic progeny was 4x only. The proportions of the different types of apomictic derived progeny differed among the years 2008 to 2010. The ploidy of progeny from emasculated flowers also segregated into 2x, 3x, and 4x individuals. These results indicate that both parthenogenesis and unreduced meiotic diplospory play important roles in apomictic reproduction in M. xiaojinensis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bicknell RA, Koltunow AM (2004) Understanding apomixes: recent advances and remaining conundrums. Plant Cell 16:228–245

    Article  Google Scholar 

  • Bisognin C, Seemuller E, Citterio S, Velasco R, Grando MS, Jarausch W (2009) Use of SSR markers to assess sexual vs. apomictic origin and ploidy level of breeding progeny derived from crosses of apple proliferation-resistant Malus sieboldii and its hybrids with Malus × domestica cultivars. Plant Breed 128:507–513

    Article  Google Scholar 

  • Boldrini KR, Adamowski EV, Silva N, Pagliarini MS, Valle CB (2011) Meiotic behavior in nonaploid accessions of Brachiaria humidicola (Poaceae) and implications for breeding. Genet Mol Res 10:169–176

    Article  PubMed  CAS  Google Scholar 

  • Button J, Kochba J, Bornman CH (1974) Fine structure of and embryoid development from embryogenic ovular callus of “Shamouti” orange (Citrus sinensis Osb). J Exptl Bot 25:446–457

    Article  Google Scholar 

  • Cai X, Mu XJ, Zhu ZQ, Hua ZM, Huang YH, Sun QX (1997) Polyembryony and multiple seedlings in the apomictic plants. Acta Bot Sin 39:590–595

    CAS  Google Scholar 

  • Chen RY, Song WQ, Li XL (1982) Wall degradation hypotonic method of preparing chromosome samples in plant and its significance in the cytogenetics. Acta Genet Sin 9:151–159

    Google Scholar 

  • Cheng MH, Yang XH, Zeng WG (1984) A preliminary report on investigation and study of M. xiaojinensis—an apple stock resource. J Southwest University 6:38–43

    Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Erwan AG, Aldo A, Dominique M, Bernard K (1996) Parthenogenesis and apospory in the Laminariales: a flow cytometry analysis. Eur J Phycol 31:369–380

    Article  Google Scholar 

  • Espinoza F, Daurelio LD, Pessino SC, Valle EM, Quarin CL (2006) Genetic characterization of Paspalum notatum accessions by AFLP markers. Plant Syst Evol 258:147–159

    Article  CAS  Google Scholar 

  • Harada T, Matsukawa K, Sato T, Ishikawa R, Niizeki M, Saito K (1993) DNA-RAPDs detect genetic variation and paternity in Malus. Euphytica 65:87–91

    Article  Google Scholar 

  • Huang YM, Chou HM, Hsieh TH, Wang JC, Chou WL (2006) Cryptic characteristics distinguish diploid and triploid varieties of Pteris fauriei (Pteridaceae). Can J Bot 84:261–268

    Article  Google Scholar 

  • Johri BM, Ambegaokar KB, Srivastava PS (1995) Comparative embryology of Angiosperms. Springer, New York, pp 338–339

    Google Scholar 

  • Kamelina OP (1995) Synergid apogamety in the genus Tetradiclis Stev. (Tetradiclidaceae) and occurrence of this phenomenon flowering plants. Apomixis Newsl 8:32–34

    Google Scholar 

  • Kroon GH, Zeilinga AE (1974) Apomixis and heterogamy in rose rootstocks (Rosa canina L.). Euphytica 23:345–352

    Article  Google Scholar 

  • Li YN (2001) Research of germplasm resources of Malus Mill. China Agriculture, Beijing, pp 207–210

    Google Scholar 

  • Li YH, Han ZH, Xu XX (2004) Segregation patterns of AFLP markers in F1 hybrids of a cross between tetraploid and diploid species in the genus Malus. Plant Breed 123:316–320

    Article  CAS  Google Scholar 

  • Li LG, He P, Ou CQ, Li HF, Zhang ZH (2008) Culture and identification of seedlings from triploid apple. J Fruit Sci 25:400–403

    Google Scholar 

  • Liu GJ, Zhang XZ, Ru GR, Bai QH (1997) 2n pollen investigation on apple germplasm. Hebei Fruit 32:9–11

    Google Scholar 

  • Liu Y, Dong WX, Zhang L, Cheng XD (2006) Study on the development characteristics of different embryo sac types of Pingyi Tiancha (Malus hupehensis). J Fruit Sci 23:330–334

    Google Scholar 

  • Liu CH, Zhang QP, Yao JL, Chen CL (2007) Karyotype analysis and pollen mother cells meiosis observation in Eulaliopsis binata. Scientia Agriculture Sinica 40:27–33

    Google Scholar 

  • Lubbers EL, Arthur L, Hanna WW, Ozias-Akins P (1994) Molecular markers shared by diverse apomictic Pennisetum species. Theor Appl Genet 89:636–642. doi:10.1007/BF00222459

    Article  CAS  Google Scholar 

  • Luo DG (1997) Inheritance of purple embryo marker trait and its utilization to apomixes research in maize. J Yunnan Agricultural University 12:114–118

    Google Scholar 

  • Maheshwari P (1950) An introduction to the embryology of Angiosperms. McGraw-Hill, New York, pp 127–155

    Google Scholar 

  • Morrion LA, Metzger RJ, Lukaszewski AJ (2004) Origin of the blue-aleurone gene in Sebesta Blue wheat genetic stocks and a protocol for it s use in apomixes screening. Crop Sci 44:2063–2067

    Article  Google Scholar 

  • Nakahara H, Nakamura Y (1973) Parthenogenesis, apogamy and apospory in Alaria crassifolia (Laminariales). Mar Biol 18:327–332

    Google Scholar 

  • Olien WC (1987) Apomictic crabapples and their potential for research and fruit production. Hort Sci 22:541–546

    Google Scholar 

  • Ozias-Akins P (2006) Apomixis: developmental characteristics and genetics. Crit Rev Plant Sci 25:199–214

    Article  Google Scholar 

  • Pichot C, Maataoui M, Radd S, Raddi P (2001) Surrogate mother for endangered Cupressus. Nat 412:39

    Article  CAS  Google Scholar 

  • Riccardo V, Andrey Z, Jason A et al (2010) The genome of the domesticated apple (Malus × domestica Borkh.). Nat Genet. doi:10.1038/ng.654

  • Risso-Pascotto C, Pagliarini MS, do Valle CB (2005) Multiple spindles and cellularization during microsporagenesis in an artificially induced tetraploid accession of Brachiaria ruzizensis (Gramineae). Plant Cell Rep 23:522–527

    Article  PubMed  CAS  Google Scholar 

  • Sauer S, Gut IG (2002) Genotyping single nucleotide polymorphisms by matrix-assisted laser desorption/ionization time of flight mass spectrometry. J Chromatogr B 782:73–87

    Article  CAS  Google Scholar 

  • Savidan Y (2000) Apomixis: genetics and breeding. Plant Breed Rev 18:13–86

    CAS  Google Scholar 

  • Silfverberg-Dilworth E, Matasci CL, Van de Weg WE, Van Kaauwen MPW, Walser M, Kodde LP, Soglio V, Gianfranceschi L, Durel CE, Costa F, Yamamoto T, Koller B, Gessler C, Patocchi A (2006) Microsatellite markers spanning the apple (Malus × domestica Borkh.) genome. Tree Genet Genomes 2:202–224

    Article  Google Scholar 

  • Takeru G, Toru M, Eiichi I, Mikio H, Toshiya Y, Tateki H, Fumio S, Masakazu K (2006) Overcoming hybrid lethality in a cross between Japanese pear and apple using gamma irradiation and confirmation of hybrid status using flow cytometry and SSR markers. Scientia Hort 109:43–47

    Article  Google Scholar 

  • Takuro K (1992) Apple culture in Japan. Chronica Hort 32:37–39

    Google Scholar 

  • Talent N, Dickinson TA (2007) Apomixis and hybridization in Rosaceae subtribe Pyrinae Dumort.: a new tool promises new insights. Regnum Veg 147:301–316

    Google Scholar 

  • Ur-Rahman H, James DJ, Hadonou AM, Caligari PDS (1997) The use of RAPD for verifying the apomictic status of seedlings of Malus species. Theor Appl Genet 95:1080–1083

    Article  CAS  Google Scholar 

  • Wieners RR, Fei SZ, Johnson RC (2006) Characterization of a USDA Kentucky bluegrass (Poa pratensis L.) core collection for reproductive mode and DNA content by flow cytometry. Genet Resour Crop Evol 53:1531–1541

    Article  Google Scholar 

  • Yan LY, Zhang XZ, Liu GJ (2000) Occurrence of unreduced gametes and ploidy restoration in haploid Capsicum annum L. J Hort Sci Biotech 75:195–197

    Google Scholar 

  • Yang XH, Zhou ZQ (2009) Anatomical characters of apomixis development in the gynoecia of M. xiaojinensis. J Fruit Sci 26(1):1–5

    Google Scholar 

  • Yang F, Zhang JE, Yi K, Liu Z, Rong ZX, Wang DM, Yan ZY (2010) Genetic trend of hybrid trees from the cross between Pingyi Tiancha (Malus hupehensis var. pingyiensis) and B9 (Malus cv. B9). J Fruit Sci 27(3):323–327

    Google Scholar 

  • Zhang XZ, Liu GJ, Yan LY, Zhao YB, Chang RF, Shu HR (2003) Creating triploid germplasm via 2n gametes in Capsicum annuum L. J Hort Sci Biotech 78:84–88

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National High Technology Research and Development Program (no. NC2010BF0075), Non-Profit Industry Research and Special Program (no. 201203075), and National Apple's Industrial Technology System (no. CARS-28). Many thanks to Professor Guolu Liang and his colleagues at the Southwestern University of China, who provided valuable assistance with chromosome counting.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZhenHai Han.

Additional information

Communicated by R. Velasco

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Meiotic behavior of microsporocytes of M. xiaojinensis at the tetrad stage. a, b Normal tetrads; c monad; d, e dyads; f unequal dyad; g, h triads; il polyads. Arrows indicate micronuclei (PDF 5933 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, L., Han, D., Gao, C. et al. Paternity and ploidy segregation of progenies derived from tetraploid Malus xiaojinensis . Tree Genetics & Genomes 8, 1469–1476 (2012). https://doi.org/10.1007/s11295-012-0535-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11295-012-0535-2

Keywords

Navigation