Skip to main content
Log in

Embryological and genetic evidence of amphimixis and apomixis in Boehmeria tricuspis

  • Original Article
  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

Apomixis is a widespread alternative mode of sexual reproduction resulting in offspring that are genetically identical to the maternal plant. Boehmeria tricuspis (Hance) Makino is a perennial, wind-pollinated, herbaceous plant in the nettle family Urticaceae. The diploid B. tricuspis is monoecious but the triploid B. tricuspis is gynoecious, bearing female inflorescences only. Apomixis in B. tricuspis was first reported 50 years ago, but the mode of apomixis in the species has not been described yet. Here, we provide embryological observations of the embryo sac formation proving that triploid B. tricuspis reproduced apomictically following the Antennaria type of diplospory, and that the diploid individuals were the sexual genotype with the classical Polygonum-type maturation pattern of embryo sac development. A subsequent flow cytometry seed screen (FCSS) showed that the triploids were obligate apomicts with autonomous endosperm development, and the diploids reproduced sexually. In addition, a progeny test by molecular marker assays further demonstrated the above results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albertini E, Marconi G, Reale L, Barcaccia G, Porceddu A, Ferranti F, Falcinelli M (2005) SERK and APOSTART: Candidate genes for apomixis in Poa pratensis. Plant Physiol 138: 2185–2199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asker SE, Jerling L (1992)) Apomixis in plant. CRC Press, Boca Raton, FL

    Google Scholar 

  • Barcaccia G, Albertini E (2013)) Apomixis in plant reproduction: a novel perspective on an old dilemma. Plant Reprod 26:159–179

    Article  PubMed  PubMed Central  Google Scholar 

  • Calzada J-PV, Crane CF, Stelly DM (1996)) Apomixis: the asexual revolution. Science 274:1322–1323

    Article  CAS  Google Scholar 

  • Crane CF (2001)) Classification of apomictic mechanisms. In Y Savidan, JG Carman, T Dresselhaus, eds, The flowering of apomixis: from mechanisms to genetic Engineering. CIMMYT and IRD, Mexico, pp 24–34

    Google Scholar 

  • Galbraith DW (2009)) Simultaneous flow cytometric quantification of plant nuclear DNA contents over the full range of described angiosperm 2C values. Cytom Part A 75:692–698

    Article  Google Scholar 

  • Gao C, Xin P, Cheng C, Tang Q, Chen P, Wang C, Zang G, Zhao L (2014)) Diversity analysis in Cannabis sativa based on largescale development of expressed sequence tag-derived simple sequence repeat markers. PLoS One 9: e110638

    Article  PubMed  PubMed Central  Google Scholar 

  • Grossniklaus U, Vielle-Calzada JP, Hoeppner MA, Gagliano WB (1998)) Maternal control of embryogenesis by MEDEA, a polycomb group gene in Arabidopsis. Science 280:446–450

    Article  CAS  PubMed  Google Scholar 

  • Hand ML, Koltunow AM (2014)) The genetic control of apomixis: asexual seed formation. Genetics 197:441–450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanna WW (1995)) Use of apomixis in cultivar development. Adv Agron 54:333–354

    Article  Google Scholar 

  • Köhler C, Kohler C, Hennig L, Bouveret R, Gheyselinck J, Grossniklaus U, Gruissem W (2003)) Arabidopsis MSI1 is a component of the MEA/FIE polycomb group complex and required for seed development. EMBO J 22:4804–4814

    Article  PubMed  PubMed Central  Google Scholar 

  • Koltunow AM (1993)) Apomixis: embryo sacs and embryos formed without meiosis or fertilization in ovules. Plant Cell 5:1425–1437

    Article  PubMed  PubMed Central  Google Scholar 

  • Leblanc O, Grimanelli D, González-de-León D, Savidan Y (1995a)) Detection of the apomictic mode of reproduction in maize-Tripsacum hybrids using maize RFLP markers. Theor and Appl Genet 90:1198–1203

    Article  CAS  Google Scholar 

  • Leblanc O, Peel MD, Carman JG, Savidan Y (1995b)) Megasporogenesis and megagametogenesis in several Tripsacum species (Poaceae). Am J Bot 82:57–63

    Article  Google Scholar 

  • Lovell JT, Aliyu OM, Mau M, Schranz ME, Koch M, Kiefer C, Song B-H, Mitchell-Olds T, Sharbel TF (2013)) On the origin and evolution of apomixis in Boechera. Plant Reprod 26:309–315

    Article  PubMed  PubMed Central  Google Scholar 

  • Maheshwari P (1950)) An Introduction to the Embryology of Angiosperms. McGraw-Hill Book Co., New York

    Google Scholar 

  • Matzk F, Meister A, Schubert I (2000)) An efficient screen for reproductive pathways using mature seeds of monocots and dicots. Plant J 21:97–108

    Article  CAS  PubMed  Google Scholar 

  • Luo M, Bilodeau P, Koltunow A, Dennis ES, Peacock WJ, Chaudhury AM (1999)) Genes controlling fertilization-independent seed development in Arabidopsis thaliana. Proc Natl Acad Sci USA 96:296–301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murray MG, Thompson WF (1980)) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nogler GA (1984)) Gametophytic apomixis. In BM Johri, eds, Embryology of angiosperms. Springer, Berlin, pp 475–518

    Google Scholar 

  • Noyes RD, Baker R, Mai B (2007)) Mendelian segregation for twofactor apomixis in Erigeron annuus (Asteraceae). Heredity 98: 92–98

    Article  CAS  PubMed  Google Scholar 

  • Ohad N, Yadegari R, Margossian L, Hannon M, Michaeli D, Harada JJ, Goldberg RB, Fischer RL (1999)) Mutations in FIE, a WD polycomb group gene, allow endosperm development without fertilization. Plant Cell 11:407–415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okabe S (1963)) Apomixis in the genus Boehmeria. Sci Rep Tohoku Uni 4:207–215

    Google Scholar 

  • Okada T, Hu Y, Tucker MR, Taylor JM, Johnson SD, Spriggs A, Tsuchiya T, Oelkers K, Rodrigues JCM, Koltunow AM (2013)) Enlarging cells initiating apomixis in Hieracium praealtum transition to an embryo sac program prior to entering mitosis. Plant Physiol 163:216–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pupilli F, Barcaccia G (2012)) Cloning plants by seeds: Inheritance models and candidate genes to increase fundamental knowledge for engineering apomixis in sexual crops. J Biotechnol 159:291–311

    Article  CAS  PubMed  Google Scholar 

  • Qiu C, Zang G (2013)) Study on chromosome behavior of polyploidy apomictic Boehmeria tricuspis. J Plant Genet Resour China 14:577–580

    Google Scholar 

  • Rodrigues JCM, Okada T, Johnson SD, Koltunow AM (2010)) A MULTICOPY SUPPRESSOR OF IRA1 (MSI1) homologue is not associated with the switch to autonomous seed development in apomictic (asexual) Hieracium plants. Plant Sci 179:590–597

    Article  CAS  Google Scholar 

  • Rodrigues JCM, Tucker MR, Johnson SD, Hrmova M, Koltunow AM (2008)) Sexual and apomictic seed formation in Hieracium requires the plant polycomb-group gene FERTILIZATION INDEPENDENT ENDOSPERM. Plant Cell 20:2372–2386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Selva J-P, Pessino SC, Meier MS, Echenique VC (2012)) Identification of candidate genes related to polyploidy and/or apomixis in Eragrostis curvula. Am J Plant Sci 03:403–416

    Article  CAS  Google Scholar 

  • Sharbel TF, Voigt ML, Corral JM, Galla G, Kumlehn J, Klukas C, Schreiber F, Vogel H, Rotter B (2010)) Apomictic and sexual ovules of Boechera display heterochronic global gene expression patterns. Plant Cell 22:655–671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silveira ED, Guimaraes LA, de Alencar Dusi DM, da Silva FR, Martins NF, do Carmo Costa MM, Alves-Ferreira M, de Campos Carneiro VT (2012)) Expressed sequence-tag analysis of ovaries of Brachiaria brizantha reveals genes associated with the early steps of embryo sac differentiation of apomictic plants. Plant Cell Rep 31:403–416

    Article  CAS  PubMed  Google Scholar 

  • van Dijk PJ, van Baarlen P, de Jong JH (2003)) The occurrence of phenotypically complementary apomixis-recombinants in crosses between sexual and apomictic dandelions (Taraxacum officinale). Sex Plant Reprod 16:71–76

    Article  Google Scholar 

  • Yahara T (1983)) A biosystematic study on the local populations of some species of the genus Boehmeria with special reference to apomixis. J Faculty Sci, Tokyo Uni Sect 3:217–261

    Google Scholar 

  • Yahara T (1986)) Distribution of sexual and agamospermous populations of Boehmeria sylvestrii and its three relatives (Urticaceae). Memoirs of the Natl Sci Museum, Tokyo 19:121–132

    Google Scholar 

  • Yahara T (1990)) Evolution of agamospermous races in Boehmeria and Eupatorium. Plant Spec Biol 5:183–196

    Article  Google Scholar 

  • Zang G, Zhao L, Sun J (1997)) Cytoembryological studies on apomixis in Boehmeria silvestrii. Acta Bot Sin 39:210–213

    Google Scholar 

  • Zhao L, Zang G (1997)) Induction of male flowering in gynoecious apomictic species in Boehmeria. Plant Fiber Sci China 2:5–8

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gonggu Zang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, Q., Zang, G., Zhao, L. et al. Embryological and genetic evidence of amphimixis and apomixis in Boehmeria tricuspis . J. Plant Biol. 59, 114–120 (2016). https://doi.org/10.1007/s12374-016-0518-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12374-016-0518-1

Keywords

Navigation