Skip to main content
Log in

Molecular characterization of the PpMADS1 gene from peach

  • Original Paper
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

PpMADS1, a member of the euAP1 clade of the class A genes, was previously cloned from peach. In this study, PpMADS1 was constitutively expressed in Arabidopsis thaliana to study its function in plant development. The transgenic A. thaliana plants containing 35S::PpMADS1 showed severe phenotype variation including early flowering, conversion of inflorescence branches to solitary flowers, formation of terminal flowers, production of higher number of carpels, petals, and stamens than non-transgenic plants, and prevention of pod shatter. Significantly, the transgenic plants produced more than one silique from a single flower. The results obtained by using cDNA microarray and real-time PCR analyses in the transgenic Arabidopsis indicated that PpMADS1 might play dual roles in regulating the floral meristem development by activating or repressing different sets of genes that would determine the different fate of a floral meristem. In addition, the PpMADS1 gene promoter was further cloned, and deletion analyses were conducted by using fused GUS as a reporter gene in transgenic A. thaliana. Histochemical staining of different organs from transgenic plants revealed the region between −197 and −454 bp was specific for GUS expression in flower primordium, and the region between −454 and −678 bp was specific for GUS expression in sepals and petals. In contrast, a negative regulatory element present between −678 and −978 bp could suppress GUS expression in filament.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abe M, Kobayashi Y, Yamamoto S, Daimon Y, Yamaguchi A, Ikeda Y, Ichinoki H, Notaguchi M, Goto K, Araki T (2005) FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science 309:1052–1056

    Article  PubMed  CAS  Google Scholar 

  • Ballester J, Socias I, Company R, Arús P, de Vicente MC (2001) Genetic mapping of a major gene delaying blooming time in almond. Plant Breed 120:268–270

    Article  CAS  Google Scholar 

  • Benlloch R, Berbel A, Serrano-Mislata A, Madueno F (2007) Floral initiation and inflorescence architecture: a comparative view. Ann Bot 100:659–676

    Article  PubMed  Google Scholar 

  • Berbel A, Navarro C, Ferrándiz C, Caňas LA, Madueňo F, Beltrán J (2001) Analysis of PEAM4, the pea AP1 functional homologue, supports a model for AP1-like genes controlling both floral meristem and floral organ identity in different plant species. Plant J 25:441–451

    Article  PubMed  CAS  Google Scholar 

  • Blázquez MA (2000) Flower development pathways. J Cell Sci 113:3547–3548

    PubMed  Google Scholar 

  • Blázquez MA, Weigel D (2000) Integration of floral inductive signals in Arabidopsis. Nature 404:889–892

    Article  PubMed  Google Scholar 

  • Boss PK, Bastow RM, Mylne JS, Dean C (2004) Multiple pathways in the decision to flower: enabling, promoting, and resetting. Plant Cell 16:S18–S31

    Article  PubMed  CAS  Google Scholar 

  • Bowman JL, Alvarez J, Weigel D, Meyerowitz EM, Smyth DR (1993) Control of flower development in Arabidopsis thaliana by APETALA1 and interacting genes. Development 119:721–743

    CAS  Google Scholar 

  • Chen L, Cheng JC, Castle L, Sung ZR (1997) EMF genes regulate Arabidopsis inflorescence development. Plant Cell 9:2011–2024

    PubMed  CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  PubMed  CAS  Google Scholar 

  • Day RC, Herridge RP, Ambrose BA, Macknight RC (2008) Transcriptome analysis of proliferating Arabidopsis endosperm reveals biological implication for the control of syncytial division, cytokinin signaling, and gene expression regulation. Plant Physiol 148:1964–1984

    Article  PubMed  CAS  Google Scholar 

  • Elo A, Lemmetyinen J, Turunen ML, Tikka L, Sopanen T (2001) Three MADS-box genes similar to APETALA1 and FRUITFULL from silver birch (Betula pendula). Physiol Plant 112:95–103

    Article  PubMed  CAS  Google Scholar 

  • Fernando DD, Zhang SS (2006) Constitutive expression of the SAP1 gene from willow (Salix discolor) cause early flowering in Arabidopsis thaliana. Dev Genes Evol 216:19–28

    Article  PubMed  CAS  Google Scholar 

  • Ferrandiz C, Gu Q, Martienssen R, Yanofsky MF (2000) Redundant regulation of meristem identity and plant architecture by FRUITFULL, APETALA1 and CAULIFLOWER. Development 127:725–734

    PubMed  CAS  Google Scholar 

  • Folter S, Angenent GC (2006) Trans meets cis in MADS science. Trends Plant Sci 11:224–231

    Article  PubMed  Google Scholar 

  • Haecker A, Gross-Hardt R, Geiges B, Sarkar A, Breuninger H, Herrmann M, Laux T (2004) Expression dynamics of WOX genes mark cell fate decisions during early embryonic patterning in Arabidopsis thaliana. Development 131:657–668

    Article  PubMed  CAS  Google Scholar 

  • Harter K, Kircher S, Frohnmeyer H, Krenz M, Nagy F, Schafer E (1994) Light-regulated modification and nuclear translocation of cytosolic G-box binding factors in parsley. Plant Cell 6:545–559

    PubMed  CAS  Google Scholar 

  • Hellens RP, Edwards EA, Leyland NR, Bean S, Mullineaux PM (2000) pGreen: a versatile and flexible binary Ti vector for Agrobacterium-mediated plant transformation. Plant Mol Biol 42:819–832

    Article  PubMed  CAS  Google Scholar 

  • Hsu HF, Huang CH, Chou LT, Yang CH (2003) Ectopic expression of an orchid (Oncidium gower Ramsey) AGL6-like gene promotes flowering by activating flowering time genes in Arabidopsis thaliana. Plant Cell Physiol 44:783–794

    Article  PubMed  CAS  Google Scholar 

  • Huala E, Sussex IM (1992) LEAFY interacts with floral homeotic genes to regulate Arabidopsis floral development. Plant Cell 4:901–913

    PubMed  Google Scholar 

  • Huang H (1987) Study on flower bud diffrentiation of fruits. J Fruit Sci 4:44–47 (in Chinese)

    Google Scholar 

  • Huang T, Böhlenius H, Eriksson S, Parcy F, Nilsson O (2005) The mRNA of the Arabidopsis gene FT moves from leaf to shoot apex and induces flowering. Science 309:1694–1696

    Article  PubMed  CAS  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusion, β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    PubMed  CAS  Google Scholar 

  • Jun J, Fiume E, Roeder A, Meng L, Sharma VK, Osmont KS, Baker C, Ha CM, Meyerowitz EM, Feldman LJ, Fletcher J (2010) Comprehensive analysis of CLE polypeptide signaling gene expression and over-expression activity in Arabidopsis. Plant Physiol 154:1721–1736

    Article  PubMed  CAS  Google Scholar 

  • Kaufmann K, Wellmer F, Muiño JM, Ferrier T, Wuest SE, Kumar V, Serrano-Mislata A, Madueño F, Krajewski P, Meyerowitz EM et al (2010) Orchestration of floral initiation by APETALA1. Science 328:85–89

    Article  PubMed  CAS  Google Scholar 

  • Kircher S, Wellmer F, Nick P, Rugner A, Schafer E, Harter K (1999) Nuclear import of the parsley bZIP transcription factor CPRF2 is regulated by phytochrome photoreceptors. J Cell Biol 144:201–211

    Article  PubMed  CAS  Google Scholar 

  • Leibfried A, To JPC, Busch W, Stehling S, Kehle A, Demar M, Kieber JJ, Lohmann JU (2005) WUSCHEL controls meristem function by direct regulation of cytokinin-inducible response regulators. Nature 438:1172–1175

    Article  PubMed  CAS  Google Scholar 

  • Liu C, Zhou J, Bracha-Drori K, Yalovsky S, Ito T, Yu H (2007) Specification of Arabidopsis floral meristem identity by repression of flowering time genes. Development 134:1901–1910

    Article  PubMed  CAS  Google Scholar 

  • Mandel MA, Gustafson-Brown C, Savidge B, Yanofsky MF (1992) Molecular characterization of the Arabidopsis floral homeotic gene APETALA1. Nature 360:273–277

    Article  PubMed  CAS  Google Scholar 

  • Olsen AN, Ernst HA, Leggio LL, Skriver K (2005) NAC transcription factors: structurally distinct, functionally diverse. Trends Plant Sci 10:79–87

    Article  PubMed  CAS  Google Scholar 

  • Posé D, Yant L, Schmid M (2011) The end of innocence: flowering networks explode in complexity. Curr Opin Plant Biol 15:1–6

    Google Scholar 

  • Rieu I, Ruiz-Rivero O, Fernandez-Garcia N, Griffiths J, Powers SJ, Gong F, Linhartova T, Eriksson S, Nilsson O, Thomas SG, Phillips AL, Hedden P (2008) The gibberellin biosynthetic genes AtGA20ox1 and AtGA20ox2 act, partially redundantly, to promote growth and development throughout the Arabidopsis life cycle. Plant J 53:488–504

    Article  PubMed  CAS  Google Scholar 

  • Sablowski RWM, Meyerowitz EM (1998) A homolog of NO APICAL MERISTEM is an immediate target of the floral homeotic genes APETALA3/PISTILLATA. Cell 92:93–103

    Article  PubMed  CAS  Google Scholar 

  • Schmid M, Davison TS, Henz SR, Pape UJ, Demar M, Vingron M, Scholkopf B, Weigel D, Lohmann JU (2005) A gene expression map of Arabidopsis thaliana development. Nat Genet 37:501–506

    Article  PubMed  CAS  Google Scholar 

  • Shannon S, Meeks-Wagner DR (1991) A mutation in the Arabidopsis TFL1 gene affects inflorescence meristem development. Plant Cell 3:877–892

    PubMed  CAS  Google Scholar 

  • Silva C, Garcia-Mas J, Sánchez AM, Arús P, Oliveira MM (2005) Looking into flowering time in almond (Prunus dulcis (Mill) D.A.Webb): the candidate gene approach. Theor Appl Genet 110:959–968

    Article  PubMed  CAS  Google Scholar 

  • Stepanova AN, Robertson-Hoyt J, Yun J, Benavente LM, Xie DY, Dolezal K, Schlereth A, Jurgens G, Alonso JM (2008) TAA1-mediated auxin biosynthesis is essential for hormone crosstalk and plant development. Cell 133:177–191

    Article  PubMed  CAS  Google Scholar 

  • Tang W, Perry SE (2003) Binding site selection for the plant MADS domain protein AGL15. J Biol Chem 278:28154–28159

    Article  PubMed  CAS  Google Scholar 

  • Tian H, Baxter IR, Lahner B, Reinders A, Salt DE, Ward JM (2010) Arabidopsis NPCC6/NaKR1 is a phloem mobile metal binding protein necessary for phloem function and root meristem maintenance. Plant Cell 22:3963–3979

    Article  PubMed  CAS  Google Scholar 

  • Wagner D, Sablowski RW, Meyerowitz EM (1999) Transcriptional activation of APETALA1 by LEAFY. Science 285:582–584

    Article  PubMed  CAS  Google Scholar 

  • Weigel D, Galzebrook J (2002) Arabidopsis: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • Weigel D, Alvarez J, Smyth DR, Yanofsky MF, Meyerowitz EM (1992) LEAFY controls floral meristem identity in Arabidopsis. Cell 69:843–859

    Article  PubMed  CAS  Google Scholar 

  • Wigge PA, Kim MC, Jaeger KE, Busch W, Schmid M, Lohmann JU, Weigel D (2005) Integration of spatial and temporal information during floral induction in Arabidopsis. Science 309:1056–1059

    Article  PubMed  CAS  Google Scholar 

  • Xu Y, Zhang L, Xie H, Zhang YQ, Oliveira MM, Ma RC (2008) Expression analysis and gentic mapping of three SEPALLATA-like genes from each (Prunus persica (L.) Batsch). Tree Genet Genome 4:693–703

    Article  Google Scholar 

  • Yanofsky MF (1995) Floral meristems to floral organs: genes controlling early events in Arabidopsis flower development. Ann Rev Plant Biol 46:167–188

    Article  CAS  Google Scholar 

  • Yoo SJ, Chung KS, Jung SH, Yoo SY, Lee JS, Ahn JH (2010) BROTHER OF FT AND TFL1 (BFT) has a TERMINAL FLOWER 1 (TFL1)-like activity and functions redundantly with TFL1 in inflorescence meristem development in Arabidopsis. Plant J 63:241–253

    Article  PubMed  CAS  Google Scholar 

  • Yu DJ (1984) Taxonomy of deciduous fruits. Shanghai Science and Technology Press, Shanghai, China (In Chinese)

    Google Scholar 

  • Zhang L, Xu Y, Ma RC (2008) Molecular cloning, identification, and chromosomal localization of two MADS box genes in peach (Prunus persica). J Genet Genomics 35:365–372

    Article  PubMed  CAS  Google Scholar 

  • Zhu C, Perry SE (2005) Control of expression and autoregulation of AGL15, a member of the MADS-box family. Plant J 41:583–594

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

This research was supported by the National Natural Science Foundation of China (grant no. 30500395) and National “863” Project of China (grant no. 2006AA10Z130 and 2006AA100108-3-7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong-Cai Ma.

Additional information

Communicated by A. Abbott

Authors Cui Li and Hua Xie contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(XLS 2229 kb)

ESM 2

(XLS 3063 kb)

ESM 3

(DOC 727 kb)

ESM 4

(DOC 23.5 kb)

ESM 5

(DOC 120 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, C., Xie, H., Zhang, L. et al. Molecular characterization of the PpMADS1 gene from peach. Tree Genetics & Genomes 8, 831–840 (2012). https://doi.org/10.1007/s11295-012-0468-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11295-012-0468-9

Keywords

Navigation